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Schur’s Theorem (1930)

Theorem

For every n ≥ 1, the truncated exponential series

expn(X ) = 1 + X +
X 2

2!
+ · · ·+ X n

n!

is an irreducible polynomial of Q[X ].

Expn(X ) = n!× expn(X ) = X n +
n−1󰁛

k=0

n!

k!
X k is irreducible in Z[X ].

Schur’s generalization:

1+ c1X + c2
X 2

2!
+ · · ·+ cn−1

X n−1

(n − 1)!
+

X n

n!
where ci ∈ Z (1 ≤ i ≤ n− 1)

is irreducible in Q[X ].
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Fares’ Suggestion

In the late 1990s, Bhargava associated to any infinite subset E of Z
generalized factorials denoted by {k!E}k≥0 and suggested to consider:

expE (X ) = 1 +
X

1!E
X +

X 2

2!E
+ · · ·+ X k

k!E
+ · · ·

[ ∀k k!|k!E ] ⇒ expE is an entire function.
Fares’ suggestion: to extend Schur’s result to this generalized exponential.
Analogously, we consider the truncated exponential polynomials

expE ,n(X ) = 1 +
X

1!E
X +

X 2

2!E
+ · · ·+ X n

n!E
,

as well as

ExpE ,n(X ) = n!E × expE ,n(X ) = X n +
n−1󰁛

k=0

n!E
k!E

X k

[ ∀k ≤ n k!E |n!E ] ⇒ ExpE ,n ∈ Z[X ].
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About Bhargava’s factorials

Definition (Fix an infinite subset E of Z and consider)

∗the ring Int(E ,Z) = {f ∈ Q[X ] | f (E ) ⊆ Z} of integer-valued poly. on E ,
∗the sets In(E ,Z) of leading coefficients of the polynomials of Intn(E ,Z),
∗the positive generators 1

n!E
of the fractional ideals In(E ,Z),

Their inverses are Bhargava’s factorials n!E associated to E .

Lemma

1- If E ⊆ F , then n!F divides n!E for every n ∈ N.
2- For every n ∈ N, n! divides n!E .
3- For 0 ≤ k ≤ n, k!E divides n!E .
4- For every n,m ∈ N, n!E ·m!E divides (n +m)!E .

Proof. 1- E ⊆ F ⇒ Int(F ,Z) ⊆ Int(E ,Z) ⇒ 1
n!F

Z ⊆ 1
n!E

Z ⇒ n!F |n!E .
3- Ik(E ,Z) ⊆ In(E ,Z) ⇒ 1

k!E
Z ⊆ 1

n!E
Z ⇒ n!E

k!E
∈ Z.

4- Intn(E ,Z) · Intm(E ,Z) ⊆ Intn+m(E ,Z).
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Extension of Schur’s arguments

By contradiction: ExpE ,n(X ) reducible ⇒ ∃ f (X ) | ExpE ,n(X ) such that
f ∈ Z[X ] is monic, irreducible, and with degree r ≤ ⌊n2⌋.

Lemma (First Argument)

If f (X ) divides ExpE ,n(X ) in Z[X ], is monic and of degree r , then f (0) is

divisible by every prime divisor p of n!E
(n−r)!E

.

Proof.

Let p be a prime divisor of n!E
(n−r)!E

.

Then, p divides n!E
i!E

for 0 ≤ i ≤ n − r .

Thus, ExpE ,n(X ) mod p is divisible by X n−r+1.

As deg
󰀓
ExpE ,n(X )

f (X )

󰀔
= n − r < n − r + 1, X divides f (X ) modulo p.
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Lemma (Second Argument)

If f (X ) divides ExpE ,n(X ) in Z[X ], is monic, of degree r , and irreducible,

and if p|f (0), then there exists k ∈ {1, . . . , n} such that r ≥ k
vp(k!E )

.

Proof.

Let α be a root of f , K = Q(α), OK the ring of integers of K .

p|f (0) and f (0) = ±NK/Q(α) ⇒ ∃q ∈ Spec(OK ) s.t. p ∈ q and α ∈ q

ExpE ,n(α) = 0 ⇒ −n!E =
󰁓n

k=1
n!E
k!E

αk ⇒ vq(n!E ) ≥ mink vq
󰀓
n!E
k!E

αk
󰀔

⇒ ∃k such that kvq(α) ≤ vq(k!E ).

vq(α) ≥ 1 and vq(k!E ) = e(q/p) vp(k!E ) ≤ r × vp(k!E )

k ≤ kvq(α) ≤ vq(k!E ) ≤ r × vp(k!E ).
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Recall that the p-valuative capacity of a subset E of Z is defined by

δp(E ) = lim
k→+∞

vp(k!E )

k

and that δp(E ) = supk≥1
vp(k!E )

k while δp(E ) is never a maximum.

Corollary (of the second argument)

If f (X ) divides ExpE ,n(X ) in Z[X ], is monic, of degree r , and irreducible,
and if p|f (0), then

r >
1

δp(E )
.
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Theorem (Third Argument: Sylvester’s theorem)

The product of s consecutive integers > s is divisible by some p > s.

Proof of Schur’s theorem.

By the third argument, since n ≥ 2(n − r), there exists p > n − r ≥ r
which divides n!

(n−r)! .

By the first argument, p divides f (0).

By the second argument, r > 1
δp(Z) where δp(Z) = limk

vp(k!)
k = 1

p−1 since

vp(k!) =
󰁛

h≥1

󰁭 k

ph

󰁮
=

󰁭k
p

󰁮
+

󰁭 k

p2

󰁮
+ · · · [Legendre]

Consequently, r > p − 1, that is, r ≥ p in contradiction with p > r .
f (X ) cannot exist and Expn(X ) is irreducible.
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looking for infinite subsets E of Z such that
ExpE ,n(X ) is irreducible for all or for some n

Example (E = aN where a ∈ N∗)

n!aN = an n! expaN(X ) = exp
󰀃
X
a

󰀄

∀n ≥ 1 expaN,n(X ) =
󰁓n

k=0
1

akk!
X k is irreducible.

Example (E = N(2) = {n2 | n ∈ N})
n!N(2) =

(2n)!
2 δp(N(2)) = 2

p−1

∀n ≥ 1 expN(2),n(X ) = 1 + 2
󰁓n

k=1
X k

(2k)! is irreducible.

Proof.
n!N(2)

(n−r)!N(2)
= (2(n − r) + 1) · · · (2n − 1)(2n) ⇒ ∃ p > 2r such that p|f (0).

p|f (0) ⇒ δp(N(2)) = 2
p−1 > 1

r ⇒ p ≤ 2r . This is a contradiction.

Schur’s Theorem Generalized 9 / 16



Analogously,

Example (E = T =
󰁱

n(n+1)
2

󰀏󰀏 n ≥ 0
󰁲
)

n!T = (2n)!
2n δp(T ) = 2

p−1 − vp(2)

∀n ≥ 1 expT ,n(X ) =
󰁓n

k=0
2k

(2k)!X
k is irreducible.

An Obvious Generalization

If F = αE + β = {αx + β | x ∈ E}, then n!F = αnn!E for every n.

Consequently,

expF (X ) = expE

󰀕
X

α

󰀖
.

If Schur’s theorem extends to E , then it also extends to F = αE + β.
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The case E = P (prime numbers)

vp(n!P) =
󰁛

k≥0

󰁭 n − 1

(p − 1)pk

󰁮
, n!P =

󰁜

p∈P
p
󰁓

k≥0

󰀇
n−1

(p−1)pk

󰀈

δp(P) = lim
n→+∞

1

n
× n − 1

p − 1
×

󰁛

k≥0

1

pk
=

p

(p − 1)2
.

Assume that:
A monic irreducible polynomial f ∈ Z[X ] of degree r divides ExpP,n(X ).

Lemma (second argument: p | f (0) ⇒ p ≤ r + 1)

Proof.

p|f (0) ⇒ (p−1)2

p < r , that is, p + 1
p < r + 2 or p ≤ r + 1.

Looking for some p ≥ r + 2 dividing f (0) to have a contradiction.
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Lemma (p ∈ P and r ∈ N∗ are such that p ≥ r + 2)

For n ≥ 2r , p
󰀏󰀏󰀏 n!P
(n−r)!P

iff n− 1 = (p− 1)q+ s with q ∈ N∗ and 0 ≤ s < r .

sketch of the proof.

vp

󰀕
n!P

(n − r)!P

󰀖
=

󰁛

k≥0

󰁭 n − 1

(p − 1)pk

󰁮
−

󰁛

k≥0

󰁭 n − r − 1

(p − 1)pk

󰁮

p
󰀏󰀏󰀏

n!P
(n − r)!P

⇔
󰁭n − 1

p − 1

󰁮
−

󰁭n − 1− r

p − 1

󰁮
> 0

p − 1 > r ⇒ [ (> 0) ⇔ (= 1) ]

Theorem (n ≥ 2r > 0, p ≥ r + 2)

If n − 1 = (p − 1)q + s where q ∈ N∗ and 0 ≤ s < r ,
then expP,n(X ) has no irreducible divisor of degree r .
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Lemma (Roots)

If α ∈ Q is a root of ExpE ,n(X ), then α ∈ Z \ N and vp(α) < δp(E ) ∀ p

Proof: ExpE ,n(α) = 0.

⇔ n!E =
󰁓n

k=1
n!E
k!E

αk ⇒ ∀p ∃k s.t. vp(α) ≤ vp(k!E )
k < δp(E )

Theorem

For all n ≥ 2, the polynomial ExpP,n(X ) does not have any root in Z.

Proof: Assume that α ∈ Z is a root of ExpP,n(X ).

δp(P) = p
(p−1)2

< 1 for p ∕= 2 and δ2(P) = 2 ⇒ α ∈ {−1,−2}.

Thus, the inequalities to consider are

2 ≤ r ≤ ⌊n2⌋ with
󰀝

p ≥ r + 2
0 ≤ s < r
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Lemma (let p ≥ ⌊n
2
⌋+ 2)

p | n!P
(n−r)!P

for all r such that 2 ≤ r ≤ ⌊n2⌋ ⇔ n = p or p + 1.

Proof.

[ p ≥ ⌊n2⌋+ 2 ] ⇒ [ n − 1 ≥
󰀓󰁭

n
2

󰁮
+ 1

󰀔
q + s > n

2q ] ⇒ [ q = 1 ].

Corollary

For every p ∈ P, expP,p(X ) and expP,p+1(X ) are irreducible.

Proof: p ≥ 5 ⇒ p ≥
󰀇
p+1
2

󰀈
+ 2 ; for n = 2, 3, 4 OK.

Example

For 1 ≤ n ≤ 8, expP,n is irreducible.
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The conditions that we used are only sufficient conditions

Note that, for a fixed n, we can consider several p. For instance:

Example

expP,9 is irreducible. Consequently, expP,n is irreducible for n ≤ 14.

Theorem

In fact, we have better results since there are several improvements of
Sylvester’s theorem.

Remark.

There are many interesting subsets E of Z for which it should be possible
to prove the irreducibility of expE ,n(X ).
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