A GENERALIZATION OF AN IRREDUCIBILITY THEOREM OF SCHUR

Jean-Luc Chabert Université de Picardie, Amiens, France

Graz, July 2025

Joint work with Michèle GIRY, Université de Picardie

Schur's Theorem (1930)

THEOREM

For every $n \ge 1$, the truncated exponential series

$$\exp_n(X) = 1 + X + \frac{X^2}{2!} + \dots + \frac{X^n}{n!}$$

is an irreducible polynomial of $\mathbb{Q}[X]$.

$$\operatorname{Exp}_n(X) = n! \times \exp_n(X) = X^n + \sum_{k=0}^{n-1} \frac{n!}{k!} X^k$$
 is irreducible in $\mathbb{Z}[X]$.

Schur's generalization:

$$1 + c_1 X + c_2 \frac{X^2}{2!} + \dots + c_{n-1} \frac{X^{n-1}}{(n-1)!} + \frac{X^n}{n!} \quad \text{where } c_i \in \mathbb{Z} \ (1 \le i \le n-1)$$

is irreducible in $\mathbb{Q}[X]$.

FARES' SUGGESTION

In the late 1990s, Bhargava associated to any infinite subset E of $\mathbb Z$ generalized factorials denoted by $\{k!_E\}_{k\geq 0}$ and suggested to consider:

$$\exp_{E}(X) = 1 + \frac{X}{1!_{E}}X + \frac{X^{2}}{2!_{E}} + \dots + \frac{X^{k}}{k!_{E}} + \dots$$

 $[\forall k \ k! | k!_E] \Rightarrow \exp_E \text{ is an entire function.}$

Fares' suggestion: to extend Schur's result to this generalized exponential. Analogously, we consider the truncated exponential polynomials

$$\exp_{E,n}(X) = 1 + \frac{X}{1!_E}X + \frac{X^2}{2!_E} + \dots + \frac{X^n}{n!_E},$$

as well as

$$\operatorname{Exp}_{E,n}(X) = n!_E \times \exp_{E,n}(X) = X^n + \sum_{k=0}^{n-1} \frac{n!_E}{k!_E} X^k$$

$$[\forall k \leq n \quad k!_E | n!_E] \Rightarrow \operatorname{Exp}_{E,n} \in \mathbb{Z}[X].$$

ABOUT BHARGAVA'S FACTORIALS

Definition (Fix an infinite subset E of \mathbb{Z} and consider)

- *the ring $\operatorname{Int}(E,\mathbb{Z}) = \{ f \in \mathbb{Q}[X] \mid f(E) \subseteq \mathbb{Z} \}$ of integer-valued poly. on E, *the sets $\mathfrak{I}_n(E,\mathbb{Z})$ of leading coefficients of the polynomials of $\operatorname{Int}_n(E,\mathbb{Z})$,
- *the positive generators $\frac{1}{n!_E}$ of the fractional ideals $\mathfrak{I}_n(E,\mathbb{Z})$,
- Their inverses are Bhargava's factorials $n!_E$ associated to E.

LEMMA

- 1- If $E \subseteq F$, then $n!_F$ divides $n!_E$ for every $n \in \mathbb{N}$.
- 2- For every $n \in \mathbb{N}$, n! divides $n!_E$.
- 3- For $0 \le k \le n$, $k!_E$ divides $n!_E$.
- 4- For every $n, m \in \mathbb{N}$, $n!_E \cdot m!_E$ divides $(n+m)!_E$.
- Proof. 1- $E \subseteq F \Rightarrow \operatorname{Int}(F, \mathbb{Z}) \subseteq \operatorname{Int}(E, \mathbb{Z}) \Rightarrow \frac{1}{n!_E} \mathbb{Z} \subseteq \frac{1}{n!_E} \mathbb{Z} \Rightarrow n!_F | n!_E$.
- 3- $\mathfrak{I}_k(E,\mathbb{Z}) \subseteq \mathfrak{I}_n(E,\mathbb{Z}) \Rightarrow \frac{1}{k!_E}\mathbb{Z} \subseteq \frac{1}{n!_E}\mathbb{Z} \Rightarrow \frac{n!_E}{k!_E} \in \mathbb{Z}.$
- 4- $\operatorname{Int}_n(E,\mathbb{Z}) \cdot \operatorname{Int}_m(E,\mathbb{Z}) \subseteq \operatorname{Int}_{n+m}(E,\mathbb{Z}).$

EXTENSION OF SCHUR'S ARGUMENTS

By contradiction: $\operatorname{Exp}_{E,n}(X)$ reducible $\Rightarrow \exists f(X) \mid \operatorname{Exp}_{E,n}(X)$ such that $f \in \mathbb{Z}[X]$ is monic, irreducible, and with degree $r \leq \lfloor \frac{n}{2} \rfloor$.

LEMMA (FIRST ARGUMENT)

If f(X) divides $\exp_{E,n}(X)$ in $\mathbb{Z}[X]$, is monic and of degree r, then f(0) is divisible by every prime divisor p of $\frac{n!_E}{(n-r)!_E}$.

PROOF.

Let p be a prime divisor of $\frac{n!_E}{(p-r)!_E}$.

Then, p divides $\frac{n!_E}{i!_E}$ for $0 \le i \le n - r$.

Thus, $\exp_{E,n}(X)$ mod p is divisible by X^{n-r+1} .

As $deg\left(\frac{\operatorname{Exp}_{E,n}(X)}{f(X)}\right) = n - r < n - r + 1$, X divides f(X) modulo p.

LEMMA (SECOND ARGUMENT)

If f(X) divides $\exp_{E,n}(X)$ in $\mathbb{Z}[X]$, is monic, of degree r, and irreducible, and if p|f(0), then there exists $k \in \{1, \ldots, n\}$ such that $r \geq \frac{k}{v_p(k!_E)}$.

PROOF.

Let α be a root of f, $K = \mathbb{Q}(\alpha)$, \mathcal{O}_K the ring of integers of K. p|f(0) and $f(0) = \pm N_{K/\mathbb{Q}}(\alpha) \Rightarrow \exists \mathfrak{q} \in \operatorname{Spec}(\mathcal{O}_K) \text{ s.t. } p \in \mathfrak{q} \text{ and } \alpha \in \mathfrak{q}$

$$\operatorname{Exp}_{E,n}(\alpha) = 0 \Rightarrow -n!_{E} = \sum_{k=1}^{n} \frac{n!_{E}}{k!_{E}} \alpha^{k} \Rightarrow v_{\mathfrak{q}}(n!_{E}) \geq \min_{k} v_{\mathfrak{q}} \left(\frac{n!_{E}}{k!_{E}} \alpha^{k} \right)$$

$$\Rightarrow \exists k \text{ such that } kv_{\mathfrak{q}}(\alpha) \leq v_{\mathfrak{q}}(k!_{E}).$$

$$v_{\mathfrak{q}}(\alpha) \geq 1$$
 and $v_{\mathfrak{q}}(k!_E) = \operatorname{e}(\mathfrak{q}/p) v_p(k!_E) \leq r \times v_p(k!_E)$

$$k \leq k v_{\mathfrak{q}}(\alpha) \leq v_{\mathfrak{q}}(k!_{E}) \leq r \times v_{p}(k!_{E}).$$

Recall that the *p-valuative capacity* of a subset E of $\mathbb Z$ is defined by

$$\delta_p(E) = \lim_{k \to +\infty} \frac{v_p(k!_E)}{k}$$

and that $\delta_p(E) = \sup_{k \ge 1} \frac{v_p(k!_E)}{k}$ while $\delta_p(E)$ is never a maximum.

COROLLARY (OF THE SECOND ARGUMENT)

If f(X) divides $\operatorname{Exp}_{E,n}(X)$ in $\mathbb{Z}[X]$, is monic, of degree r, and irreducible, and if p|f(0), then

$$r > \frac{1}{\delta_n(E)}$$
.

THEOREM (THIRD ARGUMENT: SYLVESTER'S THEOREM)

The product of s consecutive integers > s is divisible by some p > s.

PROOF OF SCHUR'S THEOREM.

By the third argument, since $n \ge 2(n-r)$, there exists $p > n-r \ge r$ which divides $\frac{n!}{(n-r)!}$.

By the first argument, p divides f(0).

By the second argument, $r>rac{1}{\delta_{
ho}(\mathbb{Z})}$ where $\delta_{
ho}(\mathbb{Z})=\lim_k rac{v_{
ho}(k!)}{k}=rac{1}{
ho-1}$ since

$$v_p(k!) = \sum_{h>1} \left\lfloor \frac{k}{p^h} \right\rfloor = \left\lfloor \frac{k}{p} \right\rfloor + \left\lfloor \frac{k}{p^2} \right\rfloor + \cdots$$
 [Legendre]

Consequently, r > p-1, that is, $r \ge p$ in contradiction with p > r. f(X) cannot exist and $\operatorname{Exp}_n(X)$ is irreducible.

Schur's Theorem Generalized

LOOKING FOR INFINITE SUBSETS E OF \mathbb{Z} SUCH THAT $\operatorname{Exp}_{E,n}(X)$ IS IRREDUCIBLE FOR ALL OR FOR SOME n

Example (
$$\mathbf{E} = \mathbf{a} \, \mathbb{N}$$
 where $\mathbf{a} \in \mathbb{N}^*$)

$$n!_{a\mathbb{N}} = a^n n!$$
 $\exp_{a\mathbb{N}}(X) = \exp\left(\frac{X}{a}\right)$ $\forall n \ge 1$ $\exp_{a\mathbb{N},n}(X) = \sum_{k=0}^n \frac{1}{2^k k!} X^k$ is irreducible.

Example
$$(\mathbf{E} = \mathbb{N}^{(2)} = {\mathbf{n}^2 \mid \mathbf{n} \in \mathbb{N}})$$

$$n!_{\mathbb{N}^{(2)}} = \frac{(2n)!}{2} \qquad \delta_p(\mathbb{N}^{(2)}) = \frac{2}{p-1}$$

$$\forall n \geq 1$$
 $exp_{\mathbb{N}^{(2)},n}(X) = 1 + 2\sum_{k=1}^n \frac{X^k}{(2k)!}$ is irreducible.

Proof.

$$\frac{n!_{\mathbb{N}^{(2)}}}{(n-r)!_{\mathbb{N}^{(2)}}} = (2(n-r)+1)\cdots(2n-1)(2n) \Rightarrow \exists p > 2r \text{ such that } p|f(0).$$

$$p|f(0) \Rightarrow \delta_p(\mathbb{N}^{(2)}) = \frac{2}{n-1} > \frac{1}{r} \Rightarrow p \leq 2r. \text{ This is a contradiction.}$$

Analogously,

Example
$$(\mathbf{E} = \mathbf{T} = \left\{ \frac{\mathsf{n}(\mathsf{n}+1)}{2} \,\middle|\, \mathsf{n} \geq \mathbf{0} \right\})$$

$$\begin{array}{ll} n!_T = \frac{(2n)!}{2^n} & \delta_p(T) = \frac{2}{p-1} - v_p(2) \\ \forall n \geq 1 & \exp_{T,n}(X) = \sum_{k=0}^n \frac{2^k}{(2k)!} X^k \text{ is irreducible.} \end{array}$$

An Obvious Generalization

If
$$F = \alpha E + \beta = {\alpha x + \beta \mid x \in E}$$
, then $n!_F = \alpha^n n!_E$ for every n .

Consequently,

$$\exp_F(X) = \exp_E\left(\frac{X}{\alpha}\right).$$

If Schur's theorem extends to E, then it also extends to $F = \alpha E + \beta$.

ロト 4回 ト 4 重 ト 4 重 ト 1 重 の 9 (で

The case $E = \mathbb{P}$ (prime numbers)

$$onumber
onumber
onumber$$

Assume that:

A monic irreducible polynomial $f \in \mathbb{Z}[X]$ of degree r divides $\operatorname{Exp}_{\mathbb{P},n}(X)$.

LEMMA (SECOND ARGUMENT:
$$p \mid f(0) \Rightarrow p \leq r + 1$$
)

PROOF.

$$p|f(0) \Rightarrow \frac{(p-1)^2}{p} < r$$
, that is, $p + \frac{1}{p} < r + 2$ or $p \le r + 1$.

Looking for some $p \ge r + 2$ dividing f(0) to have a contradiction.

Lemma $(p \in \mathbb{P} \text{ and } r \in \mathbb{N}^* \text{ are such that } p \geq r+2)$

For
$$n \geq 2r$$
, $p \mid \frac{n!_{\mathbb{P}}}{(n-r)!_{\mathbb{P}}}$ iff $n-1=(p-1)q+s$ with $q \in \mathbb{N}^*$ and $0 \leq s < r$.

SKETCH OF THE PROOF.

$$v_{p}\left(\frac{n!_{\mathbb{P}}}{(n-r)!_{\mathbb{P}}}\right) = \sum_{k \geq 0} \left\lfloor \frac{n-1}{(p-1)p^{k}} \right\rfloor - \sum_{k \geq 0} \left\lfloor \frac{n-r-1}{(p-1)p^{k}} \right\rfloor$$

$$p \left\lfloor \frac{n!_{\mathbb{P}}}{(n-r)!_{\mathbb{P}}} \right. \Leftrightarrow \left\lfloor \frac{n-1}{p-1} \right\rfloor - \left\lfloor \frac{n-1-r}{p-1} \right\rfloor > 0$$

$$p-1 > r \Rightarrow [(>0) \Leftrightarrow (=1)]$$

THEOREM $(n \ge 2r > 0, p \ge r + 2)$

If n-1 = (p-1)q + s where $q \in \mathbb{N}^*$ and $0 \le s < r$, then $\exp_{\mathbb{P},n}(X)$ has no irreducible divisor of degree r.

Schur's Theorem Generalized

LEMMA (ROOTS)

If $\alpha \in \mathbb{Q}$ is a root of $\operatorname{Exp}_{E,n}(X)$, then $\alpha \in \mathbb{Z} \setminus \mathbb{N}$ and $v_p(\alpha) < \delta_p(E) \ \forall \ p$

PROOF: $\text{Exp}_{E,n}(\alpha) = 0$.

$$\Leftrightarrow n!_E = \sum_{k=1}^n \frac{n!_E}{k!_E} \alpha^k \Rightarrow \forall p \,\exists k \text{ s.t. } v_p(\alpha) \leq \frac{v_p(k!_E)}{k} < \delta_p(E)$$

THEOREM

For all $n \geq 2$, the polynomial $\operatorname{Exp}_{\mathbb{P},n}(X)$ does not have any root in \mathbb{Z} .

PROOF: Assume that $\alpha \in \mathbb{Z}$ is a root of $\exp_{\mathbb{P}_n}(X)$.

$$\delta_p(\mathbb{P}) = \frac{p}{(p-1)^2} < 1 \text{ for } p \neq 2 \text{ and } \delta_2(\mathbb{P}) = 2 \Rightarrow \alpha \in \{-1, -2\}.$$

Thus, the inequalities to consider are

$$2 \le r \le \lfloor \frac{n}{2} \rfloor \text{ with } \begin{cases} p \ge r + 2 \\ 0 \le s < r \end{cases}$$

Lemma (let
$$p \ge \lfloor \frac{n}{2} \rfloor + 2$$
)

$$p \mid \tfrac{n!_{\mathbb{P}}}{(n-r)!_{\mathbb{P}}} \text{ for all } r \text{ such that } 2 \leq r \leq \lfloor \tfrac{n}{2} \rfloor \ \ \, \Leftrightarrow \ \ \, n = p \text{ or } p+1.$$

Proof.

$$[p \ge \lfloor \frac{n}{2} \rfloor + 2] \Rightarrow [n-1 \ge \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) q + s > \frac{n}{2}q] \Rightarrow [q=1].$$

COROLLARY

For every $p \in \mathbb{P}$, $\exp_{\mathbb{P},p}(X)$ and $\exp_{\mathbb{P},p+1}(X)$ are irreducible.

PROOF:
$$p \ge 5 \Rightarrow p \ge \left\lfloor \frac{p+1}{2} \right\rfloor + 2$$
; FOR $n = 2, 3, 4$ OK.

EXAMPLE

For $1 \le n \le 8$, $\exp_{\mathbb{P},n}$ is irreducible.

The conditions that we used are only sufficient conditions

Note that, for a fixed n, we can consider several p. For instance:

EXAMPLE

 $\exp_{\mathbb{P},9}$ is irreducible. Consequently, $\exp_{\mathbb{P},n}$ is irreducible for $n \leq 14$.

THEOREM

In fact, we have better results since there are several improvements of Sylvester's theorem.

REMARK.

There are many interesting subsets E of \mathbb{Z} for which it should be possible to prove the irreducibility of $\exp_{E,n}(X)$.

THANKS

Thanks to THE ORGANIZERS!

Many thanks also to THE FIVE ANONYMOUS REFEREES of my manuscript submitted to the American Mathematical Society entitled

INTEGER-VALUED POLYNOMIALS From Combinatorics to Number Theory, *p*-adic Analysis, Commutative and Non-Commutative Algebra

to be published by the end of 2025 in the

AMS Colloquium Publications series

