Formal Unique Factorization Domains

Gyu Whan Chang

Incheon National University

Conference on Rings and Polynomials July 14 - 19, 2025 TU Graz, Graz, Austria This talk is based on the following joint works with H.S. Choi.

- G.W. Chang and H.S. Choi, *Almost Dedekind domains constructed from chains of Dedekind domains*, submitted.
- Pormal unique factorization domains, submitted.

- Motivation
- Openition of a formal UFD
- Three examples of a formal UFD

Motivation

The ring $D = \bigcup_{n \in \mathbb{N}_0} F[X^{\frac{1}{p^n}}, X^{-\frac{1}{p^n}}]$ for a prime number p

Let p be a prime number, F a field, X an indeterminate over F, and $D_n = F[X^{\frac{1}{p^n}}, X^{-\frac{1}{p^n}}]$ for each $n \in \mathbb{N}_0$. Then

- $D_n \cong F[y, y^{-1}]$ for an indeterminate y over F,
- D_n is a PID, and
- D_{n+1} is an integral extension of D_n for all $n \in \mathbb{N}_0$,

Theorem 1

Let $D = \bigcup_{n \in \mathbb{N}_0} D_n$. Then the following conditions hold.

- 2 D is a one-dimensional Bezout domain.
- **3** D is an almost Dedekind domain if and only if char $(F) \neq p$, if and only if D is an SP domain.

Prime elements of $D = \bigcup_{n \in \mathbb{N}_0} F[X^{\frac{1}{p^n}}, X^{-\frac{1}{p^n}}]$ I

Let $f(X) \in F[X]$ be an irreducible polynomial in F[X] with $f(0) \neq 0$.

Lemma 2

Let $n \in \mathbb{N}_0$. Then f(X) is irreducible in $F[X^{\frac{1}{p^n}}]$ if and only if $f(X^{p^n})$ is irreducible in F[X].

Proposition 3

Let $D = \bigcup_{n \in \mathbb{N}_0} F[X^{\frac{1}{p^n}}, X^{-\frac{1}{p^n}}]$. Then the following statements are equivalent.

- f(X) is an irreducible element of D.
- ② If p = 2 (resp., p > 2), then $f(X^4)$ (resp., $f(X^p)$) is an irreducible element of F[X].
- **3** $f(X^{p^n})$ is an irreducible element of F[X] for all $n \in \mathbb{N}_0$.

Prime elements of $D = \bigcup_{n \in \mathbb{N}_0} F[X^{\frac{1}{p^n}}, X^{-\frac{1}{p^n}}] \parallel$

Example 4

Let $f(X) = a_0 + a_1 X + \cdots + a_m X^m$ be a nonconstant polynomial of $\mathbb{Z}[X]$ such that $q \mid a_0, q \mid a_1, \ldots, q \mid a_{m-1}, q \nmid a_m, q^2 \nmid a_0$ for some prime number q. Then the following statements hold.

- $f(X^{p^n})$ is irreducible in $\mathbb{Q}[X]$ for all $n \in \mathbb{N}_0$ by Eisenstein's criterion.
- f(X) is prime in D with $F = \mathbb{Q}$ by Proposition 3.

Example 5

Let $D = \bigcup_{n \in \mathbb{N}_0} \mathbb{Q}[X^{\frac{1}{2^n}}, X^{-\frac{1}{2^n}}]$. Note that $X^4 + 1$ is irreducible in $\mathbb{Q}[X]$ but

 X^4-1 is not irreducible in $\mathbb{Q}[X]$. Hence, by Proposition 3, X+1 is a prime element of D but X-1 is not a prime element of D. In particular, $X^{\frac{1}{2^n}}+1$ is a prime element of D for all $n\in\mathbb{N}_0$.

Formal product of infinitely many prime elements

Notice that in
$$D=\bigcup_{n\in\mathbb{N}_0}\mathbb{Q}[X^{\frac{1}{2^n}},X^{-\frac{1}{2^n}}]$$
, we have

$$egin{aligned} X-1&=(X^{rac{1}{2}}-1)(X^{rac{1}{2}}+1)\ &=(X^{rac{1}{4}}-1)(X^{rac{1}{4}}+1)(X^{rac{1}{2}}+1)\ &=(X^{rac{1}{8}}-1)(X^{rac{1}{8}}+1)(X^{rac{1}{4}}+1)(X^{rac{1}{2}}+1)\ &dots\ &=(X^{rac{1}{2^n}}-1)\prod_{i=1}^n(X^{rac{1}{2^i}}+1)\ &dots\ \end{aligned}$$

Thus, we want to write $X-1=\prod\limits_{i=1}^{\infty}(X^{\frac{1}{2^i}}+1).$

Definition of a formal UFD

Definition of formal UFDs I

Let D be an integral domain and $a, b \in D$ be nonzero.

- **1** $a \mid b$ denotes b = ad for some $d \in D$.
- ② For $n \in \mathbb{N}_0$, $a^n \parallel b$ denotes that $a^n \mid b$ but $a^{n+1} \nmid b$.
- **3** U(D) is the group of units in D.

Notation 6

- (1) Let S be a set of prime elements of D such that if $p \in D$ is a prime element, there exists a unique prime $q \in S$ so that pD = qD.
- (2) Let $\langle S \rangle$ be the saturated multiplicative subset of D generated by S and $xU(D) = \{xu \mid u \in U(D)\}$ for all $x \in D$. Then, by the axiom of choice, there exists a subset T of $D \setminus (\langle S \rangle \cup \{0\})$ such that $|T \cap aU(D)| = 1$ for all $a \in D \setminus (\langle S \rangle \cup \{0\})$.

Definition of formal UFDs II

Notation 7

- (3) Let $g \in T$ be such that there exists a unique set $\{k_p \in \mathbb{N}_0 \mid p \in S\}$ with the following properties:
 - (a) $p^{k_p} \parallel g$ for each $p \in S$ and
 - (b) if $h \in D$ is such that $p^{k_p} \parallel h$ for each $p \in S$, then $g \mid h$.

Then we will write $g = \prod_{p \in S} p^{k_p}$.

(4) If $f \in D$ is a nonzero nonunit satisfying (a) and (b) above, then there exists a unique unit u_f of D such that $f = u_f \prod_{p \in S} p^{k_p}$, which will be said to be a formal product of prime elements.

Definition of formal UFDs III

Definition 8

An integral domain D is a formal UFD if

- D is a GCD domain and
- 2 each nonzero nonunit can be written as a formal product of (possibly infinitely many) prime elements.

The following example seems to be correct, so the second condition of Definition 8 does not imply that D is a GCD domain.

Example 9 (M.H. Park's talk on Thursday)

Let V be a rank-one nondiscrete valuation domain and V[[X]] be the power series ring over V.

- $V[[X]]_{V\setminus\{0\}}$ satisfies the second condition of Definition 8.
- ② $V[[X]]_{V\setminus\{0\}}$ need not be a GCD domain.

Three examples of a formal UFD

Example of formal UFDs I

Example 10

Let $D = \bigcup_{n \in \mathbb{N}_0} \mathbb{Q}[X^{\frac{1}{2^n}}, X^{-\frac{1}{2^n}}]$. Then D is a formal UFD.

Proof.

- (1) D is a one-dimensional Bezout domain.
- (2) Let $f(X) \in \mathbb{Q}[X]$ be a nonconstant polynomial with $f(0) \neq 0$. If f(X) is irreducible over \mathbb{Q} , then the following are equivalent.
 - (i) f(X) is not a product of finitely many prime elements of D.
 - (ii) $f(X) = u\Phi_d(X)$ for some nonzero $u \in \mathbb{Q}$ and an odd integer $d \in \mathbb{N}$.
- (3) $d \in \mathbb{N}$ is even if and only if $\Phi_d(X)$ is a prime element of D.
- (4) Let k_1, \ldots, k_a be positive integers and l_1, \ldots, l_a be distinct positive odd integers. Then $\Phi_{l_1}(X)^{k_1} \cdots \Phi_{l_a}(X)^{k_a} = \prod_{\substack{n \in \mathbb{N}, \\ j \in \{1, \ldots, a\}}} \Phi_{2l_j}(X^{\frac{1}{2^n}})^{k_j}$.

Example of formal UFDs I cont.

Proof.

- (5) Each nonzero nonunit of D can be written uniquely as a formal product of prime elements of D. (Proof. Let S be the set of monic polynomials of $R = \bigcup \mathbb{Q}[X^{\frac{1}{2^n}}]$
 - that are prime elements of D.
 - **1** If $f \in D$ is a nonzero nonunit, then $X^m f \in \mathbb{Q}[X^{\frac{1}{2^k}}]$ for some integers $m, k \in \mathbb{N}_0$, so we may assume that $f \in \mathbb{Q}[X^{\frac{1}{2^k}}]$.
 - ② $D = \bigcup_{n \in \mathbb{N}_0, n \geq k} \mathbb{Q}[X^{\frac{1}{2^n}}, X^{-\frac{1}{2^n}}]$, so we may assume that k = 0, and hence $f \in \mathbb{Q}[X]$ and $f(0) \neq 0$.
 - **9** $f = f_1^{e_1} \cdots f_s^{e_s}$ is a prime (or an irreducible) factorization of f in $\mathbb{Q}[X]$.
 - Each f_i for i = 1, ..., s, and hence f can be written as a formal product of prime elements by (2), (3) and (4).
 - **3** D is a Bezout domain by (1), so D is a formal UFD.

Example of formal UFDs II

Example 11

Let D be an almost Dedekind Bézout domain and N be the saturated multiplicative subset of D generated by prime elements. If all but finitely many maximal ideals of D are principal, then D is a formal UFD.

Let c(f) be the ideal of D generated by the coefficients of a polynomial $f \in D[X]$ and $D(X) = \{\frac{f}{g} \mid f, g \in D[X] \text{ and } c(g) = D\}$. Then D(X), called the *Nagata ring* of D, is an overring of D[X].

Corollary 12

Let D be an almost Dedekind domain. If all but finitely many of maximal ideals of D are invertible, then D(X) is a formal UFD.

Example of formal UFDs III

The ring of entire functions 1

Example 13

Let E be the ring of entire functions. Then E is a formal UFD.

Proposition 14

Let $s_{\alpha} = z - \alpha$ for all $\alpha \in \mathbb{C}$, N be the saturated multiplicative subset of E generated by $\{s_{\alpha} \mid \alpha \in \mathbb{C}\}$ and D be an overring of E_N that is not a field. Then the following statements hold.

- **1** $s_{\alpha}E$ is a height-one maximal ideal of E for all $\alpha \in \mathbb{C}$.
- $E = \bigcap_{\alpha \in \mathbb{C}} E_{s_{\alpha}E}.$
- 3 D is not completely integrally closed.
- The Krull dimension of D, denoted by dim(D), is uncountable.
- \bullet D is not a formal UFD. In particular, E_N is not a formal UFD.

Example of formal UFDs III

The ring of entire functions 2

For a nonzero $f \in E$, let $Z(f) = \{\alpha \in \mathbb{C} \mid f(\alpha) = 0\}$, so Z(f) has no limit point in \mathbb{C} . Conversely, if $Z = \{z_i\}_{i \in \mathbb{N}_0}$ is a discrete subset of \mathbb{C} with no limit point in \mathbb{C} and if $\{n_i\}_{i \in \mathbb{N}_0}$ is a sequence of positive integers, then there exists $f \in E$ such that Z(f) = Z and $\mathcal{O}_{z_i}(f) = n_i$ for each $i \in \mathbb{N}_0$.

Corollary 15

Let D be an overring of E that is not a field. The following are equivalent.

- ① D is a formal UFD.
- D is completely integrally closed.
- **3** $D = \bigcap_{\alpha \in \mathcal{A}} E_{s_{\alpha}E}$ for a nonempty subset \mathcal{A} of \mathbb{C} .
- $D = E_N$, where $N = E \setminus (\bigcup_{\alpha \in A} s_\alpha E)$ for a nonempty subset A of \mathbb{C} .
- **5** $D = E_N$, where $N = \{ f \in E \mid Z(f) \cap A = \emptyset \}$ for some $\emptyset \neq A \subseteq \mathbb{C}$.

Example of formal UFDs III

The ring of entire functions 3

Corollary 16

Let D be an overring of E that is not a field. The following are equivalent.

- D is a UFD, equivalently, a Dedekind domain or a PID.
- 2 D is an almost Dedekind domain.
- **3** dim(D) = 1.
- \bullet dim $(D) < \infty$.
- **3** $D = \bigcap_{\alpha \in \mathcal{A}} E_{s_{\alpha}E}$, which is of finite character, for a nonempty $\mathcal{A} \subseteq \mathbb{C}$.
- **1** $D = \bigcap_{\alpha \in \mathcal{A}} E_{s_{\alpha}E}$ for a nonempty bounded subset \mathcal{A} of \mathbb{C} .
- **②** $D = E_N$, where $N = E \setminus (\bigcup_{\alpha \in A} s_\alpha E)$ or $N = \{f \in E \mid Z(f) \cap A = \emptyset\}$ for a nonempty bounded subset A of \mathbb{C} .

⁰E.M. Pirtle, *A note on overrings of the ring of entire functions*, Monatsh. Math. 75 (1971), 163-167.

A characterization of formal UFDs and Question

Theorem 17

Let $X_p^1(D)$ be the set of height-one principal prime ideals of a GCD domain D. Then the following statements are equivalent.

- ① D is a formal UFD.
- $D = \bigcap_{P \in X_p^1(D)} D_P.$
- \bullet D[X], the polynomial ring over D, is a formal UFD.

Question 18

Let D be an integral domain in which each nonzero nonunit can be written uniquely as a product of (possibly infinitely many) prime elements. Is D a GCD domain or a formal UFD ?

Thank you for your attention