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What is the motivation?

Ï M -ideals arise naturally in Banach space theory via duality and L-summands.

Ï Our aim: to generalize this concept to purely algebraic settings, particularly to
ring theory.

Ï Investigate whether similar structural properties persist in absence of topology.
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How it is started?

Blecher ⇒ visited UJ (2024) ⇒ Gave a talk

E. M. Alfsen and E. G. Effros, Structure in real Banach spaces. Part I, Ann.
Math., 96(1) (1972), 98–128.

Suppose that V is a real Banach space, and that W is the dual Banach space
of V . A subspace N of W is said to be an L-summand of W if there is a
subspace M with N ∩M = {0}, N +M =W , and for p ∈N , q ∈M ,
∥p+q∥ = ∥p∥+∥q∥. A closed subspace J of V is said to be an M -ideal if its
annihilator J⊥ is an L-summand in W .

(Theorem 5.8) An ideal J is an M -ideal if and only if the following
condition holds: If B1, . . ., Bn are open balls with B1∩·· ·∩Bn ̸= ; and Bi ∩J ̸= ;
for all i , then B1∩·· ·∩Bn∩J ̸= ;.
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How to extend it to rings?

An ideal J of a Banach space X is called an M -ideal if for B1, . . ., Bn open balls
of X with B1∩·· ·∩Bn ̸= ; and Bi ∩J ̸= ; for all i , implies that

B1∩·· ·∩Bn∩J ̸= ;.

Ï Banach space ⇒ Ring.
Ï Open balls ⇒ Ideals.

An ideal J of a ring R is called an M -ideal if for I1, I2, . . . , In ideals of R with
I1∩·· ·∩ In ̸= 0 and Ii ∩J ̸= 0 for each k for all i , implies that

I1∩·· ·∩ In∩J ̸= 0.
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Can we reduce the number of balls and ideals?

 Banach space M -ideal Ring M -ideal

Sufficient to take three open balls, but not to two. Sufficient to take two ideals.

An integral commutative quantale (or multiplicative lattice) is a complete lattice
(L,É,0,1) endowed with an associative, commutative multiplication (denoted by ·),
which distributes over arbitrary joins and has 1 as multiplicative identity.

An element x in a quantale L is called a M -element if for every natural number
nÊ 2 and every collection of n elements y1, y2, . . ., yn in L such that

∧n
k=1 yk ̸= 0, the

condition x ∧yk ̸= 0 for each k , implies that

x ∧
(

n∧
k=1

yk

)
̸= 0.
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Why (ring) M -ideals are interesting?

An ideal J of a ring R is called essential if J∩ I ̸= 0 for all nonzero ideals I of
R .

M -ideals are a generalization of essential ideals.

Essential submodules play a pivotal role in the theory of injective modules
via the notion of injective hulls*.

*The injective hull (or injective envelope) of a module is both the smallest
injective module containing it and the largest essential extension of it

M -submodules: a possible generalization of injective hulls.
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Can we see some examples of M -ideals?

1. Essential ideals.

2. Zero ideal.

3. The maximal ideal of a nontrivial local ring (⇐ essential ideal, except field).

4. Every ideal of an integral domain (⇐ essential ideal).

5. Every minimal ideal.

Ï R :=Z30.
Ï J := (2).
Ï I1 := (3) and I2 := (5).
Ï (2)∩ (3)= (6), (2)∩ (5)= (10), and (3)∩ (5)= (15); but (2)∩ (3)∩ (5)= 0.
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Can we characterize M -ideals?

An ideal I of a ring R is an M -ideal if and only if either it is essential or
relatively irreducible*.

*We say that an ideal I of a ring R is relatively irreducible if for every ideal J and
K of R with J ⊆ I , K ⊆ I , and J ∩K = 0 implies that either J = 0 or K = 0.
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Consequences of the above characterization?

Every minimal ideal is relatively irreducible.

Suppose n denotes the number of minimal ideals of a ring R . If nÉ 1, the
Soc(R)* is an M -ideal. If nÊ 2, the Soc(R) is an M -ideal if and only if it is
essential.

*The sum of minimal ideals.

Consider a ring Zn with n= pm1
1 · . . . ·pmk

k
. Then a nontrivial ideal

I :=
(
p
m′

1
1 · . . . ·pm

′
k

k

)
is an M -ideal if and only if there are not i , j , s ∈ {1, . . . ,k} such that i ̸= j , m′

i <mi ,
m′

j <mj , and m′
s =ms . In particular, I is essential if and only if for every i we

have m′
i <mi .
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Further consequences?

Let X be a topological space and let Open(X ) be the frame of open subsets
of X . An open U ∈Open(X ) is a M -element if and only if U is dense or
irreducible. In particular, U is essential in Open(X ) if and only if U is dense in
X .

The nonzero (ring) M -ideals in C (K ) (= ring of all continuous real-valued
functions on a compact Hausdorff space) are precisely either the essential ideals
or the minimal ideals singly generated by the characteristic function of an
isolated point.
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Some structural aspects?

Ï A ring with no proper non-zero M -ideals is simple.

Ï If J is an M -ideal of R , and K is an ideal of R which is contained in J , then J/K
is an M -ideal of R/K .

Ï If I is an M -ideal in a regular ring A and if I ⊆B ⊆A with B a subring, then I is
an M -ideal in B .

Ï Suppose that a unital ring R has a nontrivial ideal decomposition R = I ⊕J .
Then I is an M -ideal in R if and only if I is relatively irreducible.

Ï For any ring R , the following are equivalent:
1. Every proper M -ideal of R is a direct summand of R .
2. Every proper M -ideal of R is a simple ideal of R which is also a direct summand.
3. Every proper ideal of R is a direct summand of R .
4. R is a direct sum of simple rings.
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Cloning results from essential submodules?

If N and N ′ are ideals of R such that N is an M -ideal of N ′ and N ′ is an
M -ideal of R , then N is an M -ideal of R .

Suppose that R is a regular ring. Let A1,A2,B1,B2 be ideals of R . If A1 is an
M -ideal of B1 and A2 is an M -ideal of B2, then A1∩A2 is an M -ideal of B1∩B2.

An M -complement of an ideal N of a ring R is an ideal N ′ of R such that
N ∩N ′ = 0 and N +N ′ is an M -ideal of R .

M -complements are not unique: In Z12, (3) and (6) are M -complements of (4).
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...Continued

If A and N are ideals of a regular arithmetic ring R such that A⊆N , and B is
an M -complement of A in R , then B ∩N is an M -complement of A in N .

If N and Q are ideals of a ring R with N ∩Q = 0, then N has an
M -complement containing Q.

In a ring R , every ideal N of R has an M -complement.

If a ring R does not have any proper M -ideal, then R is complemented.
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Quantalic properties?

Let ϕ : L→ L′ be an injective quantale homomorphism. If y is a M -element
in L′, then ϕ−1(y) is a M -element in L.

Let L be a frame and a ∈ L. Consider the map κa : L→ a↑ defined by

κa(x) := x ∨a.

The following properties are equivalent:
1. κa preserves essential elements.
2. a is regular*.
3. κa preserves essential elements and M -elements.

*An element a ∈ L is said to be regular if a⊥⊥ = a, where a⊥ :=∨
{x ∈ L | xa= 0}.
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What next?

Ï Develop M -submodule theory similar to injective hulls.
Ï Characterize M -ideals for:

Ï Rings of measurable functions.
Ï Polynomial rings.
Ï Topological rings.
Ï ...

Ï Introduce and study M -ideals in other algebraic structures (semirings, monoids,
associative algebras,...)
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