Small Sumsets Modulo p

David J. Grynkiewicz

University of Memphis

July 18, 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Sumsets

Let G be an abelian group.

Definition For $A, B \subseteq G$, their sumset is

$$A+B=\{a+b: a\in A, b\in B\}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

3k - 4 Theorem

Theorem (3k - 4 Theorem)Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with $|A| \ge |B|$ and $|A + B| = |A| + |B| + r \le |A| + 2|B| - 3 - \delta$, where $\delta = \begin{cases} 1 & \text{if } A = (\min A - \min B) + B, \\ 0 & \text{otherwise.} \end{cases}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

3k - 4 Theorem

Theorem (3k - 4 Theorem) Let $A, B \subseteq \mathbb{Z}$ be finite and nonempty with $|A| \ge |B|$ and $|A + B| = |A| + |B| + r \le |A| + 2|B| - 3 - \delta$, where

$$\delta = \begin{cases} 1 & \text{if } A = (\min A - \min B) + B, \\ 0 & \text{otherwise.} \end{cases}$$

Then there are arithmetic progressions P_A , P_B , $P_{A+B} \subseteq \mathbb{Z}$ having common difference such that

$$X \subseteq P_X$$
 and $|P_X| \le |X| + r + 1$ for all $X \in \{A, B\}$,

$$P_{A+B} \subseteq A+B$$
 and $|P_{A+B}| \ge |A|+|B|-1$.

Freiman (1962); Lev and Smeliansky (1995); Freiman (2009); Bardaji and G (2010); G (2013)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $\begin{array}{l} \mbox{Definition (General Setup)} \\ G = \mathbb{Z}/p\mathbb{Z} \mbox{ with } p \geq 2 \mbox{ prime, } A, B \subseteq G \mbox{ nonempty, } A + B \neq G, \\ |A| \geq |B|, \ C := -(A+B)^c = - G \setminus (A+B) \mbox{ and } |A+B| = |A| + |B| + r. \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition (General Setup) $G = \mathbb{Z}/p\mathbb{Z}$ with $p \ge 2$ prime, $A, B \subseteq G$ nonempty, $A + B \ne G$, $|A| \ge |B|$, $C := -(A+B)^c = -G \setminus (A+B)$ and |A+B| = |A| + |B| + r.

Definition (Target Conclusion)

There exist arithmetic progressions P_A , P_B , $P_C \subseteq G$ of common difference with $X \subseteq P_X$ and $|P_X| \leq |X| + r + 1$ for all $X \in \{A, B, C\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition (General Setup) $G = \mathbb{Z}/p\mathbb{Z}$ with $p \ge 2$ prime, $A, B \subseteq G$ nonempty, $A + B \ne G$, $|A| \ge |B|$, $C := -(A+B)^{c} = -G \setminus (A+B)$ and |A+B| = |A| + |B| + r.

Definition (Target Conclusion)

There exist arithmetic progressions P_A , P_B , $P_C \subseteq G$ of common difference with $X \subseteq P_X$ and $|P_X| \leq |X| + r + 1$ for all $X \in \{A, B, C\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

▶ Note:
$$C \subseteq P_C$$
 with $|P_C| \le |C| + r + 1$ is equivalent to $P_{A+B} := -(P_C)^{c} \subseteq A + B$ with $|P_{A+B}| \ge |A| + |B| - 1$

Definition (General Setup) $G = \mathbb{Z}/p\mathbb{Z}$ with $p \ge 2$ prime, $A, B \subseteq G$ nonempty, $A + B \ne G$, $|A| \ge |B|$, $C := -(A+B)^c = -G \setminus (A+B)$ and |A+B| = |A| + |B| + r.

Definition (Target Conclusion)

There exist arithmetic progressions P_A , P_B , $P_C \subseteq G$ of common difference with $X \subseteq P_X$ and $|P_X| \leq |X| + r + 1$ for all $X \in \{A, B, C\}$.

▶ Note:
$$C \subseteq P_C$$
 with $|P_C| \le |C| + r + 1$ is equivalent to $P_{A+B} := -(P_C)^c \subseteq A + B$ with $|P_{A+B}| \ge |A| + |B| - 1$

Conjecture

Assume General Setup. If

$$\begin{split} |A+B| &\leq (|A|+|B|) + |B| - 3 - \delta_B \quad \text{and} \qquad |A+B| \leq p - r - 3 - \delta_C, \\ \textit{Small Doubling} \qquad \qquad + \qquad \textit{Low Density}, \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

then Target Conclusions hold.

Suppose Target Conclusions holds if $|A + B| \le p - r - 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| - 3$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Suppose Target Conclusions holds if $|A + B| \le p r 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| 3$
- ► Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| 3$ also yields Target Conclusions.

Suppose Target Conclusions holds if $|A + B| \le p - r - 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| - 3$

▶ Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 - \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| - 3$ also yields Target Conclusions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• If
$$(1-\epsilon)p \le p-r-3$$
, we can take $\alpha' = \alpha$.

- Suppose Target Conclusions holds if $|A + B| \le p r 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| 3$
- ▶ Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| 3$ also yields Target Conclusions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• If
$$(1-\epsilon)p \le p-r-3$$
, we can take $\alpha' = \alpha$.

So we need
$$r + 3 \le \epsilon p$$

- Suppose Target Conclusions holds if $|A + B| \le p r 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| 3$
- ▶ Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| 3$ also yields Target Conclusions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• If
$$(1-\epsilon)p \leq p-r-3$$
, we can take $\alpha' = \alpha$.

So we need
$$r + 3 \le \epsilon p$$

Since $A + B \neq G$, easy pigeonhole argument shows $2|B| \leq |A| + |B| \leq p$. Hence $|B| \leq \frac{p}{2}$.

- Suppose Target Conclusions holds if $|A + B| \le p r 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| 3$
- ▶ Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| 3$ also yields Target Conclusions.

• If
$$(1-\epsilon)p \leq p-r-3$$
, we can take $\alpha' = \alpha$.

So we need
$$r + 3 \le \epsilon p$$

- Since $A + B \neq G$, easy pigeonhole argument shows $2|B| \leq |A| + |B| \leq p$. Hence $|B| \leq \frac{p}{2}$.
- Thus $r + 3 \le \alpha' |B| < \alpha' \frac{p}{2}$, so it's true for $\alpha' \le 2\epsilon$

- Suppose **Target Conclusions** holds if $|A + B| \le p r 3$ and $|A + B| \le (|A| + |B|) + \alpha |B| 3$
- ▶ Goal: Given any small $\epsilon > 0$, we want to show there is some $\alpha' > 0$ such that $|A + B| \le (1 \epsilon)p$ and $|A + B| = (|A| + |B|) + r \le (|A| + |B|) + \alpha'|B| 3$ also yields Target Conclusions.

• If
$$(1-\epsilon)p \leq p-r-3$$
, we can take $\alpha' = \alpha$

So we need
$$r + 3 \le \epsilon p$$

- Since $A + B \neq G$, easy pigeonhole argument shows $2|B| \leq |A| + |B| \leq p$. Hence $|B| \leq \frac{p}{2}$.
- ▶ Thus $r + 3 \le \alpha' |B| < \alpha' \frac{p}{2}$, so it's true for $\alpha' \le 2\epsilon$

Summary:

$$|A+B| \leq (|A|+|B|) + 2\epsilon |B| - 3$$
 and $|A+B| \leq (1-\epsilon)p$

ensure A, B and C contained in small length arithmetic progressions (for small $\epsilon < \frac{1}{2}\alpha$.)

Partial Progress: Low Density

$|A+B| = |A|+|B|+r \leq (|A|+|B|) + \alpha |B|-3, \quad \text{ where } \alpha \in (0,1]$

Results for very low density with α = 1 follow from more general "rectification" principles.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Partial Progress: Low Density

 $|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$, where $\alpha \in (0, 1]$

- Results for very low density with α = 1 follow from more general "rectification" principles.
- ► $|A \cup B| \le \log_4 p$ \longrightarrow Bilu, Lev, Ruzsa (1998).
- ► $|A \cup B| \leq \lceil \log_2 p \rceil$ → Lev (2008), + technical issue G. (2013)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ A = B and $|A| \le cp$ with $c = (1/96)^{108}$ \longrightarrow Green, Ruzsa (2006)

Partial Progress: Mid-Range Density

$$|A+B| = |A|+|B|+r \leq (|A|+|B|)+\alpha|B|-3, \quad \text{ where } \alpha \in (0,1]$$

 "Balanced" approach with tangible constants both for the density and small doubling constraints

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Partial Progress: Mid-Range Density

$$|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$$
, where $\alpha \in (0, 1]$

- "Balanced" approach with tangible constants both for the density and small doubling constraints
- ► A = B: Freiman (1960s), Rodseth (2006), Candela, Serra and Spiegel (2020), Lev and Shkredov (2020), Lev and Serra (2020), Candela, González-Sánchez and G. (2022)

►
$$|A + A| \le 2|A| + (0.4)|A| - 3$$
 and $|A| \le (0.02857)p$

▶
$$|A + A| \le 2|A| + (0.4)|A| - 3$$
 and $|A| \le (0.093457)p$

▶
$$|A + A| \le 2|A| + (0.48)|A| - 7$$
 and $|A| < (0.000000001)p$

▶ $|A + A| \le 2|A| + (0.59)|A| - 3$ and $101 \le |A| < (0.0045)p$

▶ |A + A| < 2|A| + (0.7652)|A| - 3 and $10 \le |A| < (0.0000125)p$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▶ $|A + A| \le 2|A| + (0.136)|A| - 3$ and $|A + A| \le (0.75)p$

Partial Progress: Mid-Range Density

$$|A + B| = |A| + |B| + r \le (|A| + |B|) + \alpha |B| - 3$$
, where $\alpha \in (0, 1]$

- "Balanced" approach with tangible constants both for the density and small doubling constraints
- ► A = B: Freiman (1960s), Rodseth (2006), Candela, Serra and Spiegel (2020), Lev and Shkredov (2020), Lev and Serra (2020), Candela, González-Sánchez and G. (2022)

►
$$|A + A| \le 2|A| + (0.4)|A| - 3$$
 and $|A| \le (0.02857)p$

▶
$$|A + A| \le 2|A| + (0.4)|A| - 3$$
 and $|A| \le (0.093457)p$

- ▶ $|A + A| \le 2|A| + (0.48)|A| 7$ and |A| < (0.000000001)p
- ► $|A + A| \le 2|A| + (0.59)|A| 3$ and $101 \le |A| < (0.0045)p$
- ▶ |A + A| < 2|A| + (0.7652)|A| 3 and $10 \le |A| < (0.00000125)p$

▶ $|A + A| \le 2|A| + (0.136)|A| - 3$ and $|A + A| \le (0.75)p$

▶ $(0.001)|A|^{2/3} \le |B| \le |A|$, $|A + B| \le (|A| + |B|) + (0.03)|B|$ and $|A| < (0.0045)p \longrightarrow$ Huichochea (2022)

Ideal Density

Theorem (Serra and Zémor 2009) Assume General Setup. If $|A| \ge 4$, $p > 2^{94}$,

 $|A + A| \le 2|A| + (0.0001)|A|$ and $|A + A| \le p - r - 3$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

then Target Conclusions hold.

Ideal Density

Theorem (Serra and Zémor 2009) Assume General Setup. If $|A| \ge 4$, $p > 2^{94}$,

 $|A + A| \le 2|A| + (0.0001)|A|$ and $|A + A| \le p - r - 3$,

then Target Conclusions hold.

Theorem (G. 2025) Assume General Setup. If

 $|A + B| \le (|A| + |B|) + (0.01)|A| - 3$ and $|A + B| \le p - r - 3$,

then Target Conclusions hold.

< 口 > < 图 > < 흔 > < 흔 > 호 · · 이익()

Additive Trio Formulation of DeVos (2015)

- Additive Trio Formulation of DeVos (2015)
- (modified) transfer argument of Huicochea (2017): If one of the sets A, B or C is a 'moderately' small subset of an arithmetic progression, then all three sets are very small subsets of arithmetic progressions with the same difference

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Additive Trio Formulation of DeVos (2015)
- (modified) transfer argument of Huicochea (2017): If one of the sets A, B or C is a 'moderately' small subset of an arithmetic progression, then all three sets are very small subsets of arithmetic progressions with the same difference

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ $\log_2(A \cup B)$ density results: to handle small p

- Additive Trio Formulation of DeVos (2015)
- (modified) transfer argument of Huicochea (2017): If one of the sets A, B or C is a 'moderately' small subset of an arithmetic progression, then all three sets are very small subsets of arithmetic progressions with the same difference

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ $\log_2(A \cup B)$ density results: to handle small p
- Freiman's original Fourier sum estimate: new variation better adapted for A + B rather than A + A. Base Case.

- Additive Trio Formulation of DeVos (2015)
- (modified) transfer argument of Huicochea (2017): If one of the sets A, B or C is a 'moderately' small subset of an arithmetic progression, then all three sets are very small subsets of arithmetic progressions with the same difference
- ▶ $\log_2(A \cup B)$ density results: to handle small p
- Freiman's original Fourier sum estimate: new variation better adapted for A + B rather than A + A. Base Case.
- Combinatorial Reduction Argument of Candela, González-Sánchez and G. (2022): extended from A + A to A + B.

- Additive Trio Formulation of DeVos (2015)
- (modified) transfer argument of Huicochea (2017): If one of the sets A, B or C is a 'moderately' small subset of an arithmetic progression, then all three sets are very small subsets of arithmetic progressions with the same difference
- ▶ $\log_2(A \cup B)$ density results: to handle small p
- Freiman's original Fourier sum estimate: new variation better adapted for A + B rather than A + A. Base Case.
- Combinatorial Reduction Argument of Candela, González-Sánchez and G. (2022): extended from A + A to A + B.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Hamidoune's Isoperimetric method: Inductive Step

- Additive Trio Formulation of DeVos (2015)
- (modified) transfer argument of Huicochea (2017): If one of the sets A, B or C is a 'moderately' small subset of an arithmetic progression, then all three sets are very small subsets of arithmetic progressions with the same difference
- ▶ $\log_2(A \cup B)$ density results: to handle small p
- Freiman's original Fourier sum estimate: new variation better adapted for A + B rather than A + A. Base Case.
- Combinatorial Reduction Argument of Candela, González-Sánchez and G. (2022): extended from A + A to A + B.
- Hamidoune's Isoperimetric method: Inductive Step
- Improved estimates for the size of an atom (G. 2013, Serra and Zémor 2000)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Additive Trio Formulation of DeVos (2015)
- (modified) transfer argument of Huicochea (2017): If one of the sets A, B or C is a 'moderately' small subset of an arithmetic progression, then all three sets are very small subsets of arithmetic progressions with the same difference
- ▶ $\log_2(A \cup B)$ density results: to handle small *p*
- Freiman's original Fourier sum estimate: new variation better adapted for A + B rather than A + A. Base Case.
- Combinatorial Reduction Argument of Candela, González-Sánchez and G. (2022): extended from A + A to A + B.
- Hamidoune's Isoperimetric method: Inductive Step
- Improved estimates for the size of an atom (G. 2013, Serra and Zémor 2000)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(modified) 'mid-range' version of Lev and Shkredov (2020)

- Additive Trio Formulation of DeVos (2015)
- (modified) transfer argument of Huicochea (2017): If one of the sets A, B or C is a 'moderately' small subset of an arithmetic progression, then all three sets are very small subsets of arithmetic progressions with the same difference
- ▶ $\log_2(A \cup B)$ density results: to handle small *p*
- Freiman's original Fourier sum estimate: new variation better adapted for A + B rather than A + A. Base Case.
- Combinatorial Reduction Argument of Candela, González-Sánchez and G. (2022): extended from A + A to A + B.
- Hamidoune's Isoperimetric method: Inductive Step
- Improved estimates for the size of an atom (G. 2013, Serra and Zémor 2000)
- (modified) 'mid-range' version of Lev and Shkredov (2020)
- ▶ Ruzsa-Plünnecke Bounds (1989) as used by Serra and Zémor (2009)

- Additive Trio Formulation of DeVos (2015)
- (modified) transfer argument of Huicochea (2017): If one of the sets A, B or C is a 'moderately' small subset of an arithmetic progression, then all three sets are very small subsets of arithmetic progressions with the same difference
- ▶ $\log_2(A \cup B)$ density results: to handle small *p*
- Freiman's original Fourier sum estimate: new variation better adapted for A + B rather than A + A. Base Case.
- Combinatorial Reduction Argument of Candela, González-Sánchez and G. (2022): extended from A + A to A + B.
- Hamidoune's Isoperimetric method: Inductive Step
- Improved estimates for the size of an atom (G. 2013, Serra and Zémor 2000)
- (modified) 'mid-range' version of Lev and Shkredov (2020)
- Ruzsa-Plünnecke Bounds (1989) as used by Serra and Zémor (2009)
- Lengthy Calculations...

Thanks!