Lorenzo Guerrieri Jagiellonian University in Krakow

# Egyptian fractions and reciprocal complements of integral domains

Conference on Rings and Polynomials - Graz July 2025

## 1. Egyptian fractions in integral domains.

Classically, an Egyptian fraction is a representation of a rational number as a sum of distinct unit fractions.

#### Theorem.

Let q be a positive rational number and  $N \ge 0$  an integer. Then there exist  $n_1 > n_2 > \ldots > n_c > N$ , such that



**Definition (LG - Loper - Oman).** Let D be an integral domain. An nonzero element  $x \in D$  is *Egyptian* if there exist (distinct) nonzero elements  $d_1, \ldots, d_n \in D$  such that



The ring D is an *Egyptian domain* if all its nonzero elements are Egyptian.

**Remark.** Thanks to the fact that integers can be represented as Egyptian fractions with arbitrarily large denominators, the assumption of distinct denominators is redundant for integral domains.

The ring of integers  $\mathbb Z$  is an Egyptian domain.

Overrings and integral extensions of Egyptian domains are also Egyptian. Let us denote by E the set of Egyptian elements of D. Observe that:

- If x is a unit in D, then  $x = \frac{1}{x^{-1}} \in E$ .
- If  $x, y \in E$ , then  $x + y \in E \cup \{0\}$ .
- If  $x, y \in D$ , then  $x, y \in E$  if and only if  $xy \in E$ .

Integral domains with nonzero Jacobson radical are Egyptian. To prove it, pick  $x \in D$ ,  $y \in J(D) \setminus \{0\}$ , and use that xy = (xy + 1) - 1 is a sum of units, hence Egyptian.

The polynomial ring K[X] is not Egyptian. Indeed, if

$$X=\frac{1}{f_1}+\ldots+\frac{1}{f_n},$$

set  $\delta_i = \deg(f_i) \ge 0$ , and suppose  $\delta_1 \le \delta_2 \le \ldots \le \delta_n$ . Set also  $F = \prod_{i=1}^n f_i$ . Then

$$1 + \sum_{i=1}^{n} \delta_i = \deg(XF) = \deg\left(\sum_{i=1}^{n} \frac{F}{f_i}\right) \le \sum_{i=2}^{n} \delta_i.$$

This is a contradiction.

Similarly, one gets that polynomial rings and semigroup algebras over arbitrary domains are not Egyptian (if the semigroup is not a group).

However, it is interesting to notice that every overring of K[X] is Egyptian.

## 2. Reciprocal complements of integral domains

We know that  $\mathbb{Z}$  and K[X] are both Euclidean domains. But one of them is Egyptian and the other is not. Motivated by understanding this difference, Epstein gave this definition:

**Definition (Epstein).** Let *D* be an integral domain with quotient field Q(D). The *reciprocal complement* R(D) is the subring of Q(D) generated by all fractions  $\frac{1}{d}$  for nonzero  $d \in D$ .

**Remark.** D is Egyptian if and only if R(D) = Q(D).

We have

$$R(\mathbb{Z}) = \mathbb{Q}, \quad R(K[X]) = \left\{ \frac{f}{g} \, | \, f, g \in K[X], \, \deg(f) \le \deg(g) \right\} = K[X^{-1}]_{(X^{-1})}.$$

## Theorem (Epstein).

If D is an Euclidean domain, then R(D) is either a field or a DVR.

We can obtain a sort of converse of the previous theorem.

Let S be a multiplicatively closed subset of D. Then

 $R(S^{-1}D) = R(D)[S].$ 

Hence,  $R(E^{-1}D) = R(D)[E] = R(D)$  and to study R(D) we can always reduce to the case where the Egyptian elements of D are invertible (and together with zero form a field).

#### Theorem (LG).

Suppose that  $E \cup \{0\} = K$  is a field. Then, R(D) is a DVR if and only if  $D \cong K[X]$ .

## 3. Prime ideals of reciprocal complements

Let D be an integral domain. We have the following results:

- R(D) is a local domain and its maximal ideal is generated by all  $\frac{1}{x}$  for  $x \in D \setminus (E \cup \{0\})$ .
- For every nonzero  $x \in D$ , there exists a unique prime ideal  $\mathfrak{p}_x$  of R(D) maximal with respect to the property of excluding  $\frac{1}{x}$ . In particular,  $R(D)_{\mathfrak{p}_x} = R(D)[x] = R(D[x^{-1}]).$
- If dim $(R(D)) < \infty$ , then for every prime  $\mathfrak{p} \in \operatorname{Spec}(R(D))$ , there exists  $x \in D$  such that  $\mathfrak{p} = \mathfrak{p}_x$ .
- If dim $(R(D)) < \infty$ , there exists  $x \in D$  such that  $(0) = \mathfrak{p}_x$  and therefore  $\frac{1}{x}$  is contained in every nonzero prime ideal of R(D).
- If dim $(R(D)) \ge 2$ , then R(D) is not Noetherian.

Conjecture.  $\dim(R(D)) \leq \dim(D)$ .

This conjecture is proved for:

- finitely generated algebras over a field,
- semigroup algebras of the form K[S] with S contained in the positive part of a totally ordered abelian group.

For any given  $n \ge m \ge 0$ , it is possible to find D such that  $\dim(D) = n$  and  $\dim(R(D)) = m$  (and also  $E \cup \{0\}$  is a field).

If  $D = K[X_1, X_2, ..., ]$ , then dim $(R(D)) = \infty$  and  $(0) \neq \mathfrak{p}_x$  for any  $x \in D$ .

# 4. Reciprocal complements of polynomial rings in several variables. In joint work with Epstein and Loper, we studied $R_n := R(K[X_1, ..., X_n])$ . This ring has a "polynomial-like behavior":

- For i < n,  $R_n \cap K(X_1, \ldots, X_i) = R_i$ .
- For i < n, there exists prime ideals  $q_i$  such that

$$\frac{R_n}{\mathfrak{q}_i} \cong R_i, \quad (R_n)_{\mathfrak{q}_i} = R(K(X_1, \ldots, X_i)[X_{i+1}, \ldots, X_n]).$$

- dim $(R_n) = n$ .
- $R_n$  has infinitely many prime ideals of every height i = 1, ..., n 1.

But also a very different behavior:

- The element  $\frac{1}{X_1X_2\cdots X_n} \in \mathfrak{p}$  for every nonzero prime  $\mathfrak{p}$  of  $R_n$ .
- For  $n \ge 2$ ,  $R_n$  is not Noetherian.
- For  $n \ge 2$ ,  $R_n$  is not integrally closed.

Observe that for  $a, b \in D$  (with  $b, a + b \neq 0$ ) we have

$$\frac{a}{b}\cdot \frac{1}{a+b} = \frac{1}{b} - \frac{1}{a+b} \in R(D).$$

If  $\beta = \frac{X}{Y} \cdot \frac{1}{X^3 + Y^2}$ , then

$$\beta^2 = \frac{1}{X} \cdot \frac{X^3}{Y^2} \cdot \frac{1}{X^3 + Y^2} \cdot \frac{1}{X^3 + Y^2} \in R_2.$$

However  $\beta \notin R_2$ . To show this we constructed a valuation overring  $V \supseteq R_2$  such that  $v(\beta) \notin v(R_2)$ .

## Further open questions. Let $n \ge 2$ .

- Describe the elements of the integral closure of  $R_n$ , establish whether is local, completely integrally closed, etc..
- Find an algorithm to determine whether a given rational function  $\frac{f}{g} \in R_n$  for  $f, g \in K[X_1, \ldots, X_n]$ .

### 5. Factorization.

Also the factorization properties of  $R_n$  (for  $n \ge 2$ ) are not yet known. We know that:

**Theorem.** The ring  $R_n$  is atomic.

**Proof.**  $R_n$  is dominated by the DVR

$$\left\{\frac{f}{g} \mid f,g \in K[X_1,\ldots,X_n], \deg(f) \leq \deg(g)\right\}.$$

Factorization in  $R_n$  is not unique:

$$\frac{1}{X} \cdot \frac{1}{Y} = \frac{1}{X+Y} \cdot \left(\frac{1}{X} + \frac{1}{Y}\right).$$

## 6. Comparison of R(K[X,Y]) and $K[X,Y]_{(X,Y)}$ .

These two rings are both local and two-dimensional.

For  $K[X, Y]_{(X,Y)}$ , it is well-known that:

- Every nonzero (finitely generated) ideal is contained in only finitely many primes.
- Localizations at height one primes are DVRs.
- Quotients at height one primes are Noetherian, but often not regular.

For R(K[X, Y]), we can prove that:

- Every finitely generated ideal is contained in all but finitely many primes.
- Localizations at height one primes are Noetherian, but often not regular.
- Quotients at height one primes are DVRs (still unpublished).

## Bibliography:

N. Epstein, *The unit fractions from a Euclidean domain generate a DVR*, Ric. Mat. (2024). https://doi.org/10.1007/s11587-024-00922-0

N. Epstein, LG, K. A. Loper, *The reciprocal complement of a polynomial ring in several variables over a field,* To appear on Pacific Journal of Mathematics. ArXiv:2407.15637 (2024)

LG, *The reciprocal complements of classes of integral domains*, Journal of Algebra 682 (2025) 188–214.

LG, K. A. Loper, G. Oman, *From ancient Egyptian fractions to modern algebra*, Journal of Algebra and its Applications (2025) https://doi.org/10.1142/ S0219498826500787

# Thanks for your attention!