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1. Egyptian fractions in integral domains.

Classically, an Egyptian fraction is a representation of a rational number as a
sum of distinct unit fractions.

Theorem.
Let q be a positive rational number and N ≥ 0 an integer. Then there exist
n1 > n2 > . . . > nc > N , such that

q =
1

n1
+ . . .+

1

nc
.

Definition (LG - Loper - Oman). Let D be an integral domain. An
nonzero element x ∈ D is Egyptian if there exist (distinct) nonzero elements
d1, . . . , dn ∈ D such that

x =
1

d1
+ . . .+

1

dn
.

The ring D is an Egyptian domain if all its nonzero elements are Egyptian.

Remark. Thanks to the fact that integers can be represented as Egyp-
tian fractions with arbitrarily large denominators, the assumption of distinct
denominators is redundant for integral domains.



The ring of integers Z is an Egyptian domain.

Overrings and integral extensions of Egyptian domains are also Egyptian.

Let us denote by E the set of Egyptian elements of D. Observe that:

• If x is a unit in D, then x = 1
x−1 ∈ E.

• If x, y ∈ E, then x+ y ∈ E ∪ {0}.

• If x, y ∈ D, then x, y ∈ E if and only if xy ∈ E.

Integral domains with nonzero Jacobson radical are Egyptian. To prove it,
pick x ∈ D, y ∈ J(D) \ {0}, and use that xy = (xy + 1)− 1 is a sum of units,
hence Egyptian.



The polynomial ring K[X] is not Egyptian. Indeed, if

X =
1

f1
+ . . .+

1

fn
,

set δi = deg(fi) ≥ 0, and suppose δ1 ≤ δ2 ≤ . . . ≤ δn. Set also F =
∏n

i=1 fi.

Then

1+
n∑

i=1

δi = deg(XF ) = deg

(
n∑

i=1

F

fi

)
≤

n∑
i=2

δi.

This is a contradiction.

Similarly, one gets that polynomial rings and semigroup algebras over arbitrary
domains are not Egyptian (if the semigroup is not a group).

However, it is interesting to notice that every overring of K[X] is Egyptian.



2. Reciprocal complements of integral domains

We know that Z and K[X] are both Euclidean domains. But one of them is
Egyptian and the other is not. Motivated by understanding this difference,
Epstein gave this definition:

Definition (Epstein). Let D be an integral domain with quotient field
Q(D). The reciprocal complement R(D) is the subring of Q(D) generated by
all fractions 1

d
for nonzero d ∈ D.

Remark. D is Egyptian if and only if R(D) = Q(D).

We have

R(Z) = Q, R(K[X]) =

{
f

g
| f, g ∈ K[X], deg(f) ≤ deg(g)

}
= K[X−1](X−1).

Theorem (Epstein).
If D is an Euclidean domain, then R(D) is either a field or a DVR.



We can obtain a sort of converse of the previous theorem.

Let S be a multiplicatively closed subset of D. Then

R(S−1D) = R(D)[S].

Hence, R(E−1D) = R(D)[E] = R(D) and to study R(D) we can always reduce
to the case where the Egyptian elements of D are invertible (and together
with zero form a field).

Theorem (LG).
Suppose that E ∪ {0} = K is a field. Then, R(D) is a DVR if and only if
D ∼= K[X].



3. Prime ideals of reciprocal complements

Let D be an integral domain. We have the following results:

• R(D) is a local domain and its maximal ideal is generated by all 1
x

for
x ∈ D \ (E ∪ {0}).

• For every nonzero x ∈ D, there exists a unique prime ideal px of R(D)
maximal with respect to the property of excluding 1

x
. In particular,

R(D)px
= R(D)[x] = R(D[x−1]).

• If dim(R(D)) < ∞, then for every prime p ∈ Spec(R(D)), there exists
x ∈ D such that p = px.

• If dim(R(D)) < ∞, there exists x ∈ D such that (0) = px and therefore 1
x

is contained in every nonzero prime ideal of R(D).

• If dim(R(D)) ≥ 2, then R(D) is not Noetherian.



Conjecture. dim(R(D)) ≤ dim(D).

This conjecture is proved for:

• finitely generated algebras over a field,

• semigroup algebras of the form K[S] with S contained in the positive
part of a totally ordered abelian group.

For any given n ≥ m ≥ 0, it is possible to find D such that dim(D) = n and
dim(R(D)) = m (and also E ∪ {0} is a field).

If D = K[X1, X2, . . . , ], then dim(R(D)) = ∞ and (0) ̸= px for any x ∈ D.



4. Reciprocal complements of polynomial rings in several variables.

In joint work with Epstein and Loper, we studied Rn := R(K[X1, . . . , Xn]).

This ring has a ”polynomial-like behavior”:

• For i < n, Rn ∩K(X1, . . . , Xi) = Ri.

• For i < n, there exists prime ideals qi such that

Rn

qi

∼= Ri, (Rn)qi = R(K(X1, . . . , Xi)[Xi+1, . . . , Xn]).

• dim(Rn) = n.

• Rn has infinitely many prime ideals of every height i = 1, . . . , n− 1.



But also a very different behavior:

• The element 1
X1X2···Xn

∈ p for every nonzero prime p of Rn.

• For n ≥ 2, Rn is not Noetherian.

• For n ≥ 2, Rn is not integrally closed.

Observe that for a, b ∈ D (with b, a+ b ̸= 0) we have

a

b
·

1

a+ b
=

1

b
−

1

a+ b
∈ R(D).

If β = X
Y
· 1
X3+Y 2, then

β2 =
1

X
·
X3

Y 2
·

1

X3 + Y 2
·

1

X3 + Y 2
∈ R2.

However β ̸∈ R2. To show this we constructed a valuation overring V ⊇ R2

such that v(β) ̸∈ v(R2).



Further open questions. Let n ≥ 2.

• Describe the elements of the integral closure of Rn, establish whether is
local, completely integrally closed, etc..

• Find an algorithm to determine whether a given rational function f
g
∈ Rn

for f, g ∈ K[X1, . . . , Xn].



5. Factorization.

Also the factorization properties of Rn (for n ≥ 2) are not yet known.

We know that:

Theorem. The ring Rn is atomic.

Proof. Rn is dominated by the DVR{
f

g
| f, g ∈ K[X1, . . . , Xn], deg(f) ≤ deg(g)

}
.

Factorization in Rn is not unique:

1

X
·
1

Y
=

1

X + Y
·
(

1

X
+

1

Y

)
.



6. Comparison of R(K[X,Y ]) and K[X,Y ](X,Y ).

These two rings are both local and two-dimensional.

For K[X,Y ](X,Y ), it is well-known that:

• Every nonzero (finitely generated) ideal is contained in only finitely many
primes.

• Localizations at height one primes are DVRs.

• Quotients at height one primes are Noetherian, but often not regular.

For R(K[X,Y ]), we can prove that:

• Every finitely generated ideal is contained in all but finitely many primes.

• Localizations at height one primes are Noetherian, but often not regular.

• Quotients at height one primes are DVRs (still unpublished).
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Thanks for your attention!


