Polynomial Rings and Coordinates

Neena Gupta Indian Statistical Institute Kolkata, India

Rings and Polynomials July 14–19 2025 Technische Universität Graz

イヨトイ

Polynomial rings present several challenging open problems — easy to state (at least for mathematicians), difficult to solve.

- 1. Jacobian Conjecture (O.H. Keller).
- 2. Epimorphism Problem (Abhyankar-Sathaye).
- 3. \mathbb{A}^{n} -Fibration Problem (Dolgachev-Weisfeiler).
- 4. Zariski Cancellation Problem.
- 5. Linearisation Problem (Kambayashi).
- 6. Characterisation Problem.
- 7. \mathbb{A}^n -form Problem.

Throughout my talk, k will denote a field of any characteristic with algebraic closure \overline{k} .

For a ring R, $A = R^{[n]}$ denotes $A = R[F_1, ..., F_n]$ for some $F_1, ..., F_n \in A$ which are algebraically independent over R i.e., A is a polynomial ring in n indeterminates over R.

Throughout my talk, k will denote a field of any characteristic with algebraic closure \overline{k} .

For a ring R,

 $A = R^{[n]}$ denotes $A = R[F_1, ..., F_n]$ for some $F_1, ..., F_n \in A$ which are algebraically independent over R i.e., A is a polynomial ring in n indeterminates over R.

• To determine whether a polynomial F is a *coordinate* of $k[X_1, \ldots, X_n]$, i.e., whether there exist F_2, \ldots, F_n such that $k[X_1, \ldots, X_n] = k[F, F_2, \ldots, F_n] = k[F]^{[n-1]}$.

Throughout my talk, k will denote a field of any characteristic with algebraic closure \overline{k} .

For a ring R,

 $A = R^{[n]}$ denotes $A = R[F_1, ..., F_n]$ for some $F_1, ..., F_n \in A$ which are algebraically independent over R i.e., A is a polynomial ring in n indeterminates over R.

• To determine whether a polynomial F is a *coordinate* of $k[X_1, \ldots, X_n]$, i.e., whether there exist F_2, \ldots, F_n such that $k[X_1, \ldots, X_n] = k[F, F_2, \ldots, F_n] = k[F]^{[n-1]}$.

Of special interest: polynomials which are linear in one variable.

Throughout my talk, k will denote a field of any characteristic with algebraic closure \overline{k} .

For a ring R,

 $A = R^{[n]}$ denotes $A = R[F_1, ..., F_n]$ for some $F_1, ..., F_n \in A$ which are algebraically independent over R i.e., A is a polynomial ring in n indeterminates over R.

• To determine whether a polynomial F is a *coordinate* of $k[X_1, \ldots, X_n]$, i.e., whether there exist F_2, \ldots, F_n such that $k[X_1, \ldots, X_n] = k[F, F_2, \ldots, F_n] = k[F]^{[n-1]}$.

Of special interest: polynomials which are linear in one variable.

• To examine whether $A \cong k[X_1, \ldots, X_n] = k^{[n]}$ for a given ring A.

• • = • • = •

Throughout my talk, k will denote a field of any characteristic with algebraic closure \overline{k} .

For a ring R,

 $A = R^{[n]}$ denotes $A = R[F_1, ..., F_n]$ for some $F_1, ..., F_n \in A$ which are algebraically independent over R i.e., A is a polynomial ring in n indeterminates over R.

• To determine whether a polynomial F is a *coordinate* of $k[X_1, \ldots, X_n]$, i.e., whether there exist F_2, \ldots, F_n such that $k[X_1, \ldots, X_n] = k[F, F_2, \ldots, F_n] = k[F]^{[n-1]}$.

Of special interest: polynomials which are linear in one variable.

• To examine whether $A \cong k[X_1, \ldots, X_n] = k^{[n]}$ for a given ring A.

Of special interest: rings A which are quotients of polynomial rings by linear polynomials.

A Pioneer in Affine Algebraic Geometry

Shreeram S. Abhyankar (1930-2012)

Polynomials and power series, May they forever rule the world

Neena Gupta

ISI, Kolkata

k: field of characteristic 0.

Thm 1. (High-School Version) Let u(T), v(T) be polynomials such that T = g(u(T), v(T)) for some polynomial g(X, Y).

+ E + < E +</p>

k: field of characteristic 0.

Thm 1. (High-School Version) Let u(T), v(T) be polynomials such that T = g(u(T), v(T)) for some polynomial g(X, Y).

Then either $\deg_{\mathcal{T}} u \mid \deg_{\mathcal{T}} v$ or $\deg_{\mathcal{T}} v \mid \deg_{\mathcal{T}} u$.

k: field of characteristic 0.

Thm 1. (High-School Version) Let u(T), v(T) be polynomials such that T = g(u(T), v(T)) for some polynomial g(X, Y).

Then either $\deg_{\mathcal{T}} u \mid \deg_{\mathcal{T}} v$ or $\deg_{\mathcal{T}} v \mid \deg_{\mathcal{T}} u$.

Thm 1'. (Ring Theoretic Version) Let $\phi : k[X, Y] \to k[T]$ be an epimorphism (surjection). Let $n = \deg_T \phi(X) \ge 1$, $m = \deg_T \phi(Y) \ge 1$.

I = I = I = I

k: field of characteristic 0.

Thm 1. (High-School Version) Let u(T), v(T) be polynomials such that T = g(u(T), v(T)) for some polynomial g(X, Y).

Then either $\deg_{\mathcal{T}} u \mid \deg_{\mathcal{T}} v$ or $\deg_{\mathcal{T}} v \mid \deg_{\mathcal{T}} u$.

Thm 1'. (Ring Theoretic Version) Let $\phi : k[X, Y] \to k[T]$ be an epimorphism (surjection). Let $n = \deg_T \phi(X) \ge 1$, $m = \deg_T \phi(Y) \ge 1$.

Then either m | n or n | m.

k: field of characteristic 0.

Thm 1. (High-School Version) Let u(T), v(T) be polynomials such that T = g(u(T), v(T)) for some polynomial g(X, Y).

Then either $\deg_{\mathcal{T}} u \mid \deg_{\mathcal{T}} v$ or $\deg_{\mathcal{T}} v \mid \deg_{\mathcal{T}} u$.

Thm 1'. (Ring Theoretic Version) Let $\phi : k[X, Y] \to k[T]$ be an epimorphism (surjection). Let $n = \deg_T \phi(X) \ge 1$, $m = \deg_T \phi(Y) \ge 1$. Then **either** m | n or n | m.

Thm 2 (Abhyankar-Moh, Suzuki). Let $F \in k[X, Y]$. Then

$$k[X, Y]/(F) = k^{[1]} \Rightarrow k[X, Y] = k[F]^{[1]}.$$

伺 ト イヨ ト イヨ トー

$$\textbf{Q.} \ \frac{\textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_n]}{(\textbf{F})} = \textbf{k}^{[n-1]} \implies \textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_n] = \textbf{k}[\textbf{F}]^{[n-1]}?$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

E

$$\textbf{Q.} \; \frac{\textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_n]}{(\textbf{F})} = \textbf{k}^{[n-1]} \implies \textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_n] = \textbf{k}[\textbf{F}]^{[n-1]}?$$

n = 2: **YES** ch k = 0 (Abhyankar-Moh; Suzuki (1975))

n = 2: **NO** ch k > 0 (Segre 1957, Nagata (1972))

* E > * E >

Q.
$$\frac{\mathbf{k}[\mathbf{X}_{1}, \dots, \mathbf{X}_{n}]}{(\mathbf{F})} = \mathbf{k}^{[n-1]} \implies \mathbf{k}[\mathbf{X}_{1}, \dots, \mathbf{X}_{n}] = \mathbf{k}[\mathbf{F}]^{[n-1]}?$$

$$n = 2: \mathbf{YES} \text{ ch } k = 0 \text{ (Abhyankar-Moh; Suzuki (1975))}$$

$$n = 2: \mathbf{NO} \text{ ch } k > 0 \text{ (Segre 1957, Nagata (1972))}$$

$$\mathbf{Ex} \text{ (Segre (1957), Nagata (1971)):}$$

$$\text{Let } g(Z, T) = Z^{p^{e}} + T + T^{sp} \in k[Z, T],$$
where $e, s \in \mathbb{N}, p^{e} \not\mid sp, sp \not\mid p^{e}.$ Then

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

E

 $\textbf{Q}. \; \frac{\textbf{k}[\textbf{X}_1, \ldots, \textbf{X}_n]}{(\textbf{F})} = \textbf{k}^{[n-1]} \; \Longrightarrow \; \textbf{k}[\textbf{X}_1, \ldots, \textbf{X}_n] = \textbf{k}[\textbf{F}]^{[n-1]}?$ n = 2: **YES** ch k = 0 (Abhyankar-Moh; Suzuki (1975)) n = 2: **NO** ch k > 0 (Segre 1957, Nagata (1972)) **Ex** (Segre (1957), Nagata (1971)): Let $g(Z, T) = Z^{p^e} + T + T^{sp} \in k[Z, T]$, where $e, s \in \mathbb{N}$, $p^e \not\mid sp, sp \not\mid p^e$. Then $k[Z, T]/(g(Z, T)) = k^{[1]}$ but $k[Z, T] \neq k[g(Z, T)]^{[1]}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Э

 $\textbf{Q}. \ \frac{\textbf{k}[\textbf{X}_1, \ldots, \textbf{X}_n]}{(\textbf{F})} = \textbf{k}^{[n-1]} \implies \textbf{k}[\textbf{X}_1, \ldots, \textbf{X}_n] = \textbf{k}[\textbf{F}]^{[n-1]}?$ n = 2: **YES** ch k = 0 (Abhyankar-Moh; Suzuki (1975)) n = 2: **NO** ch k > 0 (Segre 1957, Nagata (1972)) **Ex** (Segre (1957), Nagata (1971)): Let $g(Z, T) = Z^{p^e} + T + T^{sp} \in k[Z, T]$, where $e, s \in \mathbb{N}$, $p^e \not\mid sp, sp \not\mid p^e$. Then $k[Z,T]/(g(Z,T)) = k^{[1]}$ but $k[Z,T] \neq k[g(Z,T)]^{[1]}$. **Defn**. We say g is a nontrivial line.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\textbf{Q.} \ \frac{\textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_n]}{(\textbf{F})} = \textbf{k}^{[n-1]} \implies \textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_n] = \textbf{k}[\textbf{F}]^{[n-1]}?$ n = 2: **YES** ch k = 0 (Abhyankar-Moh; Suzuki (1975)) n = 2: **NO** ch k > 0 (Segre 1957, Nagata (1972)) **Ex** (Segre (1957), Nagata (1971)): Let $g(Z, T) = Z^{p^e} + T + T^{sp} \in k[Z, T]$. where $e, s \in \mathbb{N}$, $p^e \not\mid sp, sp \not\mid p^e$. Then $k[Z,T]/(g(Z,T)) = k^{[1]}$ but $k[Z,T] \neq k[g(Z,T)]^{[1]}$. **Defn**. We say g is a nontrivial line.

Abhyankar-Sathaye Conjecture: YES when ch k = 0.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\textbf{Q.} \ \frac{\textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_n]}{(\textbf{F})} = \textbf{k}^{[n-1]} \implies \textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_n] = \textbf{k}[\textbf{F}]^{[n-1]}?$ n = 2: **YES** ch k = 0 (Abhyankar-Moh; Suzuki (1975)) n = 2: **NO** ch k > 0 (Segre 1957, Nagata (1972)) **Ex** (Segre (1957), Nagata (1971)): Let $g(Z, T) = Z^{p^e} + T + T^{sp} \in k[Z, T]$. where $e, s \in \mathbb{N}$, $p^e \not\mid sp, sp \not\mid p^e$. Then $k[Z,T]/(g(Z,T)) = k^{[1]}$ but $k[Z,T] \neq k[g(Z,T)]^{[1]}$. **Defn**. We say g is a nontrivial line.

Abhyankar-Sathaye Conjecture: YES when ch k = 0.

Question on Epimorphism Problem can be asked even when ch $k \ge 0$ and F is of certain specified type.

・ロト ・同ト ・ヨト ・ヨト

Thm (Sathaye, Russell (1976)): Let ch $k \ge 0$ and

 $\frac{k[X, Y, Z]}{(G)} = k^{[2]}, \text{ where } G = a(X, Z)Y - b(X, Z).$

Neena Gupta ISI, Kolkata Polynomial Rings and Coordinates

(日本)(日本)(日本)(日本)

Thm (Sathaye, Russell (1976)): Let ch $k \ge 0$ and $\frac{k[X, Y, Z]}{(G)} = k^{[2]}, \text{ where } G = a(X, Z)Y - b(X, Z).$

Then $k[X, Y, Z] = k[G]^{[2]}$ and there exists $X_1 \in k[X, Z]$ s.t.

 $a(X,Z) = a_1(X_1), k[X,Z] = k[X_1]^{[1]} \text{ and } k[X,Y,Z] = k[X_1,G]^{[1]}.$

Thm (Sathaye, Russell (1976)): Let ch $k \ge 0$ and $k[X, Y, Z] = \mu^{[2]}$

 $\frac{k[X,Y,Z]}{(G)} = k^{[2]}, \text{ where } G = a(X,Z)Y - b(X,Z).$

Then $k[X, Y, Z] = k[G]^{[2]}$ and there exists $X_1 \in k[X, Z]$ s.t.

 $a(X,Z) = a_1(X_1), k[X,Z] = k[X_1]^{[1]} \text{ and } k[X,Y,Z] = k[X_1,G]^{[1]}.$

In particular, if $A = k^{[2]}$, then for any linear plane F in A[Y], coordinates X, Z of A can be so chosen, such that

F = a(X)Y + b(X,Z).

Thm (Sathaye, Russell (1976)): Let ch $k \ge 0$ and

 $\frac{k[X, Y, Z]}{(G)} = k^{[2]}, \text{ where } G = a(X, Z)Y - b(X, Z).$

Then $k[X, Y, Z] = k[G]^{[2]}$ and there exists $X_1 \in k[X, Z]$ s.t.

 $a(X,Z) = a_1(X_1), k[X,Z] = k[X_1]^{[1]} \text{ and } k[X,Y,Z] = k[X_1,G]^{[1]}.$

In particular, if $A = k^{[2]}$, then for any linear plane F in A[Y], coordinates X, Z of A can be so chosen, such that

F = a(X)Y + b(X,Z).

Q. Let $\frac{k[X, Y, Z, T]}{(G)} = k^{[3]}$ where G = a(X)Y - b(X, Z, T). Is $k[X, Y, Z, T] = k[X, G]^{[2]}$? **YES** for $a(X) = X^r$ where r > 1 (- (2014)).

A.K. Dutta, A. Sathaye and N. Gupta at the Asiatic Society, Kolkata

Neena Gupta ISI, Kolkata Polynomial Rings and Coordinates

イロト イポト イヨト イヨト

A few other cases

Thm: *k* field of characteristic $p \ge 0$ and $F = aY^n - b$, where $a, b \in k[X, Z]$ and $p \nmid n$. Then

 $\mathbf{k}[\mathbf{X},\mathbf{Y},\mathbf{Z}]/(\mathbf{F}) = \mathbf{k}^{[2]} \implies \mathbf{k}[\mathbf{X},\mathbf{Y},\mathbf{Z}] = \mathbf{k}[\mathbf{F}]^{[2]},$

k alg. closed (Wright (1978)); any k (Das-Dutta (2011)).

• • = • • = • = =

A few other cases

Thm: *k* field of characteristic $p \ge 0$ and $F = aY^n - b$, where $a, b \in k[X, Z]$ and $p \nmid n$. Then

 $\mathbf{k}[\mathbf{X},\mathbf{Y},\mathbf{Z}]/(\mathbf{F}) = \mathbf{k}^{[2]} \implies \mathbf{k}[\mathbf{X},\mathbf{Y},\mathbf{Z}] = \mathbf{k}[\mathbf{F}]^{[2]},$

k alg. closed (Wright (1978)); any k (Das-Dutta (2011)).

Thm (Russell-Sathaye (1979)): k field of characteristic zero and $F = a_n Y^n + a_{n-1} Y^{n-1} + \cdots + a_1 Y + a_0 \in k[X, Y, Z]$, where $a_0, \ldots, a_n \in k[X, Z]$ s.t. $gcd(a_1, \ldots, a_n) \notin k$. Then

 $\mathbf{k}[\mathbf{X},\mathbf{Y},\mathbf{Z}]/(\mathbf{F})=\mathbf{k}^{[2]}\implies \mathbf{k}[\mathbf{X},\mathbf{Y},\mathbf{Z}]=\mathbf{k}[\mathbf{F}]^{[2]}.$

伺 ト イヨト イヨト

A few other cases

Thm: *k* field of characteristic $p \ge 0$ and $F = aY^n - b$, where $a, b \in k[X, Z]$ and $p \nmid n$. Then

 $\mathbf{k}[\mathbf{X},\mathbf{Y},\mathbf{Z}]/(\mathbf{F}) = \mathbf{k}^{[2]} \implies \mathbf{k}[\mathbf{X},\mathbf{Y},\mathbf{Z}] = \mathbf{k}[\mathbf{F}]^{[2]},$

k alg. closed (Wright (1978)); any k (Das-Dutta (2011)).

Thm (Russell-Sathaye (1979)): k field of characteristic zero and $F = a_n Y^n + a_{n-1} Y^{n-1} + \dots + a_1 Y + a_0 \in k[X, Y, Z]$, where $a_0, \dots, a_n \in k[X, Z]$ s.t. $gcd(a_1, \dots, a_n) \notin k$. Then

 $\mathbf{k}[\mathbf{X},\mathbf{Y},\mathbf{Z}]/(\mathbf{F})=\mathbf{k}^{[2]}\implies \mathbf{k}[\mathbf{X},\mathbf{Y},\mathbf{Z}]=\mathbf{k}[\mathbf{F}]^{[2]}.$

Thm (Kaliman (2002)): Suppose that $G \in \mathbb{C}[X, Y, Z]$ s.t.

$$\frac{\mathbb{C}[\mathbf{X},\mathbf{Y},\mathbf{Z}]}{(\mathbf{G}-\lambda)} = \mathbb{C}^{[\mathbf{2}]} \text{ for almost all } \lambda \in \mathbb{C}.$$

Then $\mathbb{C}[\mathbf{X}, \mathbf{Y}, \mathbf{Z}] = \mathbb{C}[\mathbf{G}]^{[2]}$.

k: any field, $B := k[X_1, \dots, X_m, Y, Z, T],$ $H := \alpha(X_1, \dots, X_m)Y - F(X_1, \dots, X_m, Z, T) \text{ and }$ A := B/H.

伺 ト イヨ ト イヨ トー

Э

k: any field,

$$B := k[X_1, ..., X_m, Y, Z, T],$$

 $H := \alpha(X_1, ..., X_m)Y - F(X_1, ..., X_m, Z, T)$ and
 $A := B/H.$

Q. (i) Under what condition(s) $A = k^{[m+2]}$?

k: any field,

$$B := k[X_1, \dots, X_m, Y, Z, T],$$

$$H := \alpha(X_1, \dots, X_m)Y - F(X_1, \dots, X_m, Z, T) \text{ and}$$

$$A := B/H.$$

Q. (i) Under what condition(s) $A = k^{[m+2]}$?

(ii) Does $A = k^{[m+2]} \implies B = k[H]^{[m+2]}$?

k: any field,

$$B := k[X_1, \dots, X_m, Y, Z, T],$$

$$H := \alpha(X_1, \dots, X_m)Y - F(X_1, \dots, X_m, Z, T) \text{ and}$$

$$A := B/H.$$

Q. (i) Under what condition(s) $A = k^{[m+2]}$? (ii) Does $A = k^{[m+2]} \implies B = k[H]^{[m+2]}$? (iii) Does $A = k^{[m+2]} \implies B = k[X_1, \dots, X_m, H]^{[2]}$?

k: any field,

$$B := k[X_1, \dots, X_m, Y, Z, T],$$

$$H := \alpha(X_1, \dots, X_m)Y - F(X_1, \dots, X_m, Z, T) \text{ and}$$

$$A := B/H.$$

Q. (i) Under what condition(s) $A = k^{[m+2]}$? (ii) Does $A = k^{[m+2]} \implies B = k[H]^{[m+2]}$? (iii) Does $A = k^{[m+2]} \implies B = k[X_1, \dots, X_m, H]^{[2]}$? For $m = 1, k = \mathbb{C}$, Kaliman-Vénéreau-Zaidenberg (2003) obtained initial results.

k: any field,

$$B := k[X_1, \dots, X_m, Y, Z, T],$$

$$H := \alpha(X_1, \dots, X_m)Y - F(X_1, \dots, X_m, Z, T) \text{ and}$$

$$A := B/H.$$

Q. (i) Under what condition(s) $A = k^{[m+2]}$? (ii) Does $A = k^{[m+2]} \implies B = k[H]^{[m+2]}$? (iii) Does $A = k^{[m+2]} \implies B = k[X_1, \dots, X_m, H]^{[2]}$? For $m = 1, k = \mathbb{C}$, Kaliman-Vénéreau-Zaidenberg (2003) obtained initial results.

For $m \ge 1$ and general k, affirmative answers under certain assumptions on α and F are given in recent papers with Parnashree Ghosh and Ananya Pal. Example: (i) Ch k = 0 and $F \in k[Z, T]$. (ii) Ch $k \ge 0$, $\alpha = a_1(X_1)a_2(X_2)\cdots a_m(X_m)$ and $F \in k[Z_m, T]_{\mathbb{R}}$

Parnashree Ghosh at the 80th birthday conference in the honour of H. Kraft, Monte-Verita

イロト イポト イヨト イヨト

Ananya Pal at St. Petersburg, Russia

イロト イボト イヨト イヨト
Thm (Ghosh, —, Pal)

k any field, $F=a(X)Y-b(X,Z,T)\in k[X,Y,Z,W],$ $a\neq 0,$ B:=k[X,Y,Z,T]/(F)

and x: image of X in A. Suppose a(X) has no simple root in \overline{k} . Then the following statements are equivalent:

Thm (Ghosh, —, Pal)

k any field, $F=a(X)Y-b(X,Z,T)\in k[X,Y,Z,W],$ $a\neq 0,$ B:=k[X,Y,Z,T]/(F)

and x: image of X in A. Suppose a(X) has no simple root in \overline{k} . Then the following statements are equivalent:

- $B = k^{[3]}$.
- $B = k[x]^{[2]}$.
- $k[X, Y, Z, W] = k[F]^{[3]}$.
- $k[X, Y, Z, W] = k[X, F]^{[2]}$.
- $\forall \text{ root } \lambda \text{ of } a(X), \ k(\lambda)[Z, T] = k(\lambda)[b(\lambda, Z, T)]^{[1]}.$

.

Thm (Ghosh, —, Pal)

k any field, $F=a(X)Y-b(X,Z,T)\in k[X,Y,Z,W],$ $a\neq 0,$ B:=k[X,Y,Z,T]/(F)

and x: image of X in A. Suppose a(X) has no simple root in \overline{k} . Then the following statements are equivalent:

- $B = k^{[3]}$.
- $B = k[x]^{[2]}$.
- $k[X, Y, Z, W] = k[F]^{[3]}$.
- $k[X, Y, Z, W] = k[X, F]^{[2]}$.
- $\forall \text{ root } \lambda \text{ of } a(X), \ k(\lambda)[Z, T] = k(\lambda)[b(\lambda, Z, T)]^{[1]}.$

Eg: The following polynomials do not define affine 3-spaces

•
$$G_1 = X^2(X+1)^2Y - (Z^2+T^3) - X \in k_1[X,Y,Z,T].$$

•
$$G_2 = (X^p - \lambda^p)Y - (Z^2 + T^3) + X \in k_2[X, Y, Z, T]$$

where ch. $k_2 = p > 0$, $\lambda^p \in k_2 \setminus k_2^p$.

Thm (Ghosh — Pal)

k: field of characteristic zero, $B := k[X_1, \dots, X_m, Y, Z, T],$ $H := \alpha(X_1, \dots, X_m)Y - f(Z, T) - h(X_1, \dots, X_m, Z, T), \text{ s.t.}$ $f \neq 0 \text{ and every prime divisor of } \alpha \text{ divides } h \text{ and}$

 $A:=\frac{k[X_1,\ldots,X_m,Y,Z,T]}{(\alpha(X_1,\ldots,X_m)Y-f(Z,T)-h(X_1,\ldots,X_m,Z,T))}.$

• • = • • = •

Thm (Ghosh — Pal)

k: field of characteristic zero, $B := k[X_1, \dots, X_m, Y, Z, T],$ $H := \alpha(X_1, \dots, X_m)Y - f(Z, T) - h(X_1, \dots, X_m, Z, T), \text{ s.t.}$ $f \neq 0 \text{ and every prime divisor of } \alpha \text{ divides } h \text{ and}$

$$A:=\frac{k[X_1,\ldots,X_m,Y,Z,T]}{(\alpha(X_1,\ldots,X_m)Y-f(Z,T)-h(X_1,\ldots,X_m,Z,T))}.$$

Suppose $A^{[l]} = k^{[l+m+2]}$ for some $l \ge 0$ and that k[Z, T]/(f) is a regular ring. Then

 $k[Z,T] = k[f]^{[1]}$

and

$$B = k[X_1,\ldots,X_m,H]^{[2]}.$$

• • = • • = •

Breakthroughs on central problems in AAG involved varieties defined by "linear" polynomials of the form F = aY - b, where $a \in k[X]$ and $b \in k[X, Z, T]$.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Breakthroughs on central problems in AAG involved varieties defined by "linear" polynomials of the form F = aY - b, where $a \in k[X]$ and $b \in k[X, Z, T]$.

 \bullet Solution of Linearization Problem for $\mathbb{C}^*\text{-}actions$ on \mathbb{C}^3 involved questions like:

Q. Is the Russell-cubic $A = \frac{\mathbb{C}[X, Y, Z, T]}{(X^2Y + X + Z^2 + T^3)} = \mathbb{C}^{[3]}$?

Breakthroughs on central problems in AAG involved varieties defined by "linear" polynomials of the form F = aY - b, where $a \in k[X]$ and $b \in k[X, Z, T]$.

 \bullet Solution of Linearization Problem for $\mathbb{C}^*\text{-}actions$ on \mathbb{C}^3 involved questions like:

Q. Is the Russell-cubic $A = \frac{\mathbb{C}[X, Y, Z, T]}{(X^2Y + X + Z^2 + T^3)} = \mathbb{C}^{[3]}$?

Thm (Makar-Limanov (1996)): NO .

Breakthroughs on central problems in AAG involved varieties defined by "linear" polynomials of the form F = aY - b, where $a \in k[X]$ and $b \in k[X, Z, T]$.

 \bullet Solution of Linearization Problem for $\mathbb{C}^*\text{-}actions$ on \mathbb{C}^3 involved questions like:

Q. Is the Russell-cubic $A = \frac{\mathbb{C}[X, Y, Z, T]}{(X^2Y + X + Z^2 + T^3)} = \mathbb{C}^{[3]}$?

Thm (Makar-Limanov (1996)): NO .

 \bullet I could give negative solution to ZCP in +ve ch. for 3-space by proving that the "Asanuma threefold"

$$\mathsf{A} = \frac{\mathsf{k}[\mathsf{X},\mathsf{Y},\mathsf{Z},\mathsf{T}]}{(\mathsf{X}^{\mathsf{r}}\mathsf{Y} + \mathsf{Z}^{\mathsf{p}^2} + \mathsf{T} + \mathsf{T}^{\mathsf{sp}})} = \mathsf{k}^{[\mathbf{3}]}, \text{ ch. } k = p, \ p \nmid s \text{ ; } r, s > 1.$$

The threefold was earlier involved in questions on the Affine Fibration Problem and the Linearisation Problem in \pm ve ch. \pm $-\infty$

Affine Fibration Problem

Let R be a ring, P a prime ideal of R and A an R-algebra. **Notation**:

k(P): the field of fractions of the integral domain R/P. $A \otimes_R k(P)$: the fibre ring of A at P.

Aim: To extract information about the *R*-algebra *A* from data on its fibre rings $A \otimes_R k(P)$.

• • = • • = •

Affine Fibration Problem

Let R be a ring, P a prime ideal of R and A an R-algebra. **Notation**:

k(P): the field of fractions of the integral domain R/P. $A \otimes_R k(P)$: the fibre ring of A at P.

Aim: To extract information about the *R*-algebra *A* from data on its fibre rings $A \otimes_R k(P)$.

Definition: A is called \mathbb{A}^n -fibration over R if A is flat and finitely generated over R satisfying

$$A \otimes_R k(P) = k(P)^{[n]} \forall$$
 prime ideals P of R.

Affine Fibration Problem

Let R be a ring, P a prime ideal of R and A an R-algebra. **Notation**:

k(P): the field of fractions of the integral domain R/P. $A \otimes_R k(P)$: the fibre ring of A at P.

Aim: To extract information about the *R*-algebra *A* from data on its fibre rings $A \otimes_R k(P)$.

Definition: A is called \mathbb{A}^n -fibration over R if A is flat and finitely generated over R satisfying

$$A \otimes_R k(P) = k(P)^{[n]} \forall$$
 prime ideals P of R.

Question (Dolgachev and Weisfeiler (1974)): Let *R* be a regular local ring of dim *d* and *A* an \mathbb{A}^n -fibration over *R*. Is $A = R^{[n]}$?

Q (Dolgachev and Weisfeiler (1974)): Let R be a regular local ring of dim d and A an \mathbb{A}^n -fib over R, i.e., A is flat and finitely generated over R satisfying

$$A \otimes_R k(P) = k(P)^{[n]} \forall$$
 prime ideals P of R. (*)

Is $A = R^{[n]}$?

• • = • • = •

Q (Dolgachev and Weisfeiler (1974)): Let R be a regular local ring of dim d and A an \mathbb{A}^n -fib over R, i.e., A is flat and finitely generated over R satisfying

$$A \otimes_R k(P) = k(P)^{[n]} \forall$$
 prime ideals P of R. (*)

Is $A = R^{[n]}$?

 $n = 1, d \ge 1$: YES (Kambayashi-Miyanishi (1978)) * holds $\forall P$ of ht ≤ 1 (Dutta (1995))

Q (Dolgachev and Weisfeiler (1974)): Let R be a regular local ring of dim d and A an \mathbb{A}^n -fib over R, i.e., A is flat and finitely generated over R satisfying

$$A \otimes_R k(P) = k(P)^{[n]} \forall$$
 prime ideals P of R. (*)

Is $A = R^{[n]}$?

 $n = 1, d \ge 1$: **YES** (Kambayashi-Miyanishi (1978)) * holds $\forall P$ of ht ≤ 1 (Dutta (1995))

n = 2, d = 1: **YES** if $\mathbb{Q} \subseteq R$ (Sathaye (1983)) **NO** if $\mathbb{Q} \nsubseteq R$ (Asanuma (1987))

Q (Dolgachev and Weisfeiler (1974)): Let R be a regular local ring of dim d and A an \mathbb{A}^n -fib over R, i.e., A is flat and finitely generated over R satisfying

$$A \otimes_R k(P) = k(P)^{[n]} \forall$$
 prime ideals P of R. (*)

ls $A = R^{[n]}$?

 $n = 1, d \ge 1$: **YES** (Kambayashi-Miyanishi (1978)) * holds $\forall P$ of ht ≤ 1 (Dutta (1995))

n = 2, d = 1: **YES** if $\mathbb{Q} \subseteq R$ (Sathaye (1983)) **NO** if $\mathbb{Q} \nsubseteq R$ (Asanuma (1987))

n = 2, d = 2: OPEN if $\mathbb{Q} \subseteq R$.

Q (Dolgachev and Weisfeiler (1974)): Let R be a regular local ring of dim d and A an \mathbb{A}^n -fib over R, i.e., A is flat and finitely generated over R satisfying

$$A \otimes_R k(P) = k(P)^{[n]} \forall$$
 prime ideals P of R. (*)

Is $A = R^{[n]}$?

- n = 1, $d \ge 1$: **YES** (Kambayashi-Miyanishi (1978)) * holds $\forall P$ of ht ≤ 1 (Dutta (1995))
- n = 2, d = 1: **YES** if $\mathbb{Q} \subseteq R$ (Sathaye (1983)) **NO** if $\mathbb{Q} \nsubseteq R$ (Asanuma (1987))

n = 2, d = 2: OPEN if $\mathbb{Q} \subseteq R$.

n = 2, $d \ge 2$: **NO** if $\mathbb{Q} \nsubseteq R$ (Asanuma (1987), — (2014))

.

Q (Dolgachev and Weisfeiler (1974)): Let R be a regular local ring of dim d and A an \mathbb{A}^n -fib over R, i.e., A is flat and finitely generated over R satisfying

$$A \otimes_R k(P) = k(P)^{[n]} \forall$$
 prime ideals P of R. (*)

Is $A = R^{[n]}$?

- $n = 1, d \ge 1$: YES (Kambayashi-Miyanishi (1978)) * holds $\forall P$ of ht ≤ 1 (Dutta (1995))
- n = 2, d = 1: **YES** if $\mathbb{Q} \subseteq R$ (Sathaye (1983)) **NO** if $\mathbb{Q} \nsubseteq R$ (Asanuma (1987))

n = 2, d = 2: OPEN if $\mathbb{Q} \subseteq R$.

Neena Gupta

n = 2, $d \ge 2$: **NO** if $\mathbb{Q} \nsubseteq R$ (Asanuma (1987), — (2014))

ISI, Kolkata

Thm (Asanuma (1987)): Let *R* be a regular local ring and *A* an \mathbb{A}^n -fib over *R*. Then $A^{[\ell]} = R^{[n+\ell]}$ for some ℓ .

Polynomial Rings and Coordinates

Ex: Let k be a field of characteristic p > 0 and

$$\mathbf{A} = \frac{\mathbf{k}[\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{T}]}{(\mathbf{X}^{\mathsf{r}}\mathbf{Y} + \mathbf{Z}^{\mathsf{p}^2} + \mathbf{T} + \mathbf{T}^{\mathsf{sp}})}, \quad p \nmid s \quad , s \geq 2, r \geq 1.$$

Neena Gupta ISI, Kolkata Polynomial Rings and Coordinates

Ex: Let k be a field of characteristic p > 0 and

$$\mathbf{A} = \frac{\mathbf{k}[\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{T}]}{(\mathbf{X}^{\mathsf{r}}\mathbf{Y} + \mathbf{Z}^{\mathsf{p}^2} + \mathbf{T} + \mathbf{T}^{\mathsf{sp}})}, \quad p \nmid s \quad , s \geq 2, r \geq 1.$$

Thm (Asanuma (1987)):

Let x denote the image of X in A. Then

- A is an \mathbb{A}^2 -fibration over k[x].
- $\mathbf{A}^{[1]} \cong_{\mathbf{k}[\mathbf{x}]} \mathbf{k}[\mathbf{x}]^{[3]} = \mathbf{k}^{[4]}$ but
- $A \ncong_{k[x]} k[x]^{[2]}$.

Thus A is a nontrivial \mathbb{A}^2 -fibration over the PID k[x].

Ex: Let k be a field of characteristic p > 0 and

$$\mathbf{A} = \frac{\mathbf{k}[\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{T}]}{(\mathbf{X}^{\mathsf{r}}\mathbf{Y} + \mathbf{Z}^{\mathsf{p}^2} + \mathbf{T} + \mathbf{T}^{\mathsf{sp}})}, \quad p \nmid s \quad , s \geq 2, r \geq 1.$$

Thm (Asanuma (1987)):

Let x denote the image of X in A. Then

- A is an \mathbb{A}^2 -fibration over k[x].
- $A^{[1]} \cong_{\mathbf{k}[\mathbf{x}]} \mathbf{k}[\mathbf{x}]^{[3]} = \mathbf{k}^{[4]}$ but
- $\mathbf{A} \ncong_{\mathbf{k}[\mathbf{x}]} \mathbf{k}[\mathbf{x}]^{[2]}$.

Thus A is a nontrivial \mathbb{A}^2 -fibration over the PID k[x].

Q (Asanuma (1994)): Is
$$\mathbf{A} \cong_{\mathbf{k}} \mathbf{k}^{[3]}$$
?

Ex: Let k be a field of characteristic p > 0 and

$$\mathbf{A} = \frac{\mathbf{k}[\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{T}]}{(\mathbf{X}^{\mathsf{r}}\mathbf{Y} + \mathbf{Z}^{\mathsf{p}^2} + \mathbf{T} + \mathbf{T}^{\mathsf{sp}})}, \quad p \nmid s \quad , s \geq 2, r \geq 1.$$

Thm (Asanuma (1987)):

Let x denote the image of X in A. Then

- A is an \mathbb{A}^2 -fibration over k[x].
- $A^{[1]} \cong_{\mathbf{k}[\mathbf{x}]} \mathbf{k}[\mathbf{x}]^{[3]} = \mathbf{k}^{[4]}$ but
- $\mathbf{A} \ncong_{\mathbf{k}[\mathbf{x}]} \mathbf{k}[\mathbf{x}]^{[2]}$.

Thus A is a nontrivial \mathbb{A}^2 -fibration over the PID k[x].

Q (Asanuma (1994)): Is $\mathbf{A} \cong_{\mathbf{k}} \mathbf{k}^{[3]}$?

If YES then Linearisation Prob has -ve soln for $k^{[3]}$ in +ve ch. If NO then ZCP has -ve soln for $k^{[3]}$ in +ve ch.

P. Russell called this dichotomy: Asanuma's Dilemma.

A stalwart in Affine Algebraic Geometry

T. Asanuma at Ramakrishna Mission Institute of Culture,

		0	
IN	eena	(- 11	nta
	CCHA	u	PLU

ISI, Kolkata

Polynomial Rings and Coordinates

Ex: Let k be a field of characteristic p > 0 and

$$\mathbf{A} = \frac{\mathbf{k}[\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{T}]}{(\mathbf{X}^{r}\mathbf{Y} + \mathbf{Z}^{p^{2}} + \mathbf{T} + \mathbf{T}^{sp})}, \ p \nmid s \ , r \geq 1, s \geq 2$$

Thm (Asanuma (1987)):

Let x denote the image of X in A. Then

• A is an \mathbb{A}^2 -fibration over k[x].

•
$$\mathsf{A}^{[1]}\cong_{\mathsf{k}[\mathsf{x}]}\mathsf{k}[\mathsf{x}]^{[3]}=\mathsf{k}^{[4]}$$
 but

Thus A is a nontrivial \mathbb{A}^2 -fibration over the PID k[x].

Q (Asanuma (1994)): Is $\mathbf{A} \cong_{\mathbf{k}} \mathbf{k}^{[3]}$?

If YES then Linearisation Prob has -ve soln for $k^{[3]}$ in +ve ch. If NO then ZCP has -ve soln for $k^{[3]}$ in +ve ch.

P. Russell called this dichotomy: Asanuma's Dilemma.

Thm (- 2014): $A \cong k^{[3]}$ for $r \ge 2$.

A Founder of modern Algebraic Geometry

Oscar Zariski (1899-1986) Brought rigour in classical algebraic geometry, laid the foundation of modern algebraic Geometry with A. Weil, connected it with commutative algebra **Zariski Cancellation Problem**: Is \mathbb{A}^n_k cancellative as an affine variety? i.e., for an affine variety \mathbb{V} ,

 $\mathbb{V} \times \mathbb{A}^1_k \cong \mathbb{A}^{n+1}_k \implies \mathbb{V} \cong \mathbb{A}^n_k?$

More generally, is $k^{[n]}(=k[X_1,\ldots,X_n])$ cancellative? i.e.,

 $\textbf{A}[\textbf{W}]\cong_k \textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_{n+1}]\implies \textbf{A}\cong_k \textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_n]?$

Zariski Cancellation Problem: Is \mathbb{A}^n_k cancellative as an affine variety? i.e., for an affine variety \mathbb{V} ,

 $\mathbb{V} \times \mathbb{A}^1_k \cong \mathbb{A}^{n+1}_k \implies \mathbb{V} \cong \mathbb{A}^n_k?$

More generally, is $k^{[n]}(=k[X_1,\ldots,X_n])$ cancellative? i.e.,

 $\boldsymbol{\mathsf{A}}[\boldsymbol{\mathsf{W}}]\cong_k \boldsymbol{\mathsf{k}}[\boldsymbol{\mathsf{X}}_1,\ldots,\boldsymbol{\mathsf{X}}_{n+1}]\implies \boldsymbol{\mathsf{A}}\cong_k \boldsymbol{\mathsf{k}}[\boldsymbol{\mathsf{X}}_1,\ldots,\boldsymbol{\mathsf{X}}_n]?$

n = **1**: **YES** (Abhyankar-Eakin-Heinzer (1972))

n = **2**: **YES** ch k = 0 (Fujita (1979), Miyanishi-Sugie (1980)) **YES** k perfect (Russell (1981)) **YES** ch $k \ge 0$, k any field (Bhatwadekar— (2015))

同下 イヨト イヨト ニヨ

Zariski Cancellation Problem: Is \mathbb{A}^n_k cancellative as an affine variety? i.e., for an affine variety \mathbb{V} ,

 $\mathbb{V}\times\mathbb{A}^1_k\cong\mathbb{A}^{n+1}_k\implies\mathbb{V}\cong\mathbb{A}^n_k?$

More generally, is $k^{[n]}(=k[X_1,\ldots,X_n])$ cancellative? i.e.,

 $\textbf{A}[\textbf{W}]\cong_k \textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_{n+1}] \implies \textbf{A}\cong_k \textbf{k}[\textbf{X}_1,\ldots,\textbf{X}_n]?$

n = 1: YES (Abhyankar-Eakin-Heinzer (1972))

n = **2**: **YES** ch k = 0 (Fujita (1979), Miyanishi-Sugie (1980))

YES k perfect (Russell (1981)) **YES** ch $k \ge 0$, k any field (Bhatwadekar— (2015))

Research on ZCP for n = 2 had led to:

- Topological characterisation of \mathbb{C}^2 (C.P. Ramanujam (1971))
- Algebraic characterisation of k^2 (M. Miyanishi (1975))

A pioneer on the Characterisation Problem

C.P. Ramanujam (1938-1974)

Neena Gupta ISI, Kolkata Polynomial Rings and Coordinates

• • = • • = •

Four Stalwarts of Affine Algebraic Geometry

M. Koras, P. Russell, M. Miyanishi and R.V. Gurjar

Neena Gupta

ISI, Kolkata

Polynomial Rings and Coordinates

∃ ► < ∃ ►</p>

ZCP. Is $k^{[n]}$ (= $k[X_1, ..., X_n]$) cancellative? **n** = **1**: **YES** (Abhyankar-Eakin-Heinzer (1972)) **n** = **2**: **YES** ch k = 0 (Fujita (1979), Miyanishi-Sugie (1980)) **YES** k perfect (Russell (1981)) **YES** ch $k \ge 0$, k any field (Bhatwadekar— (2015)) **n** \ge **3**: **NO** ch k > 0 (— 2014)

• • = • • = •

ZCP. Is $k^{[n]}$ (= $k[X_1, ..., X_n]$) cancellative? **n** = **1**: **YES** (Abhyankar-Eakin-Heinzer (1972)) **n** = **2**: **YES** ch k = 0 (Fujita (1979), Miyanishi-Sugie (1980)) **YES** k perfect (Russell (1981)) **YES** ch $k \ge 0$, k any field (Bhatwadekar— (2015)) **n** \ge **3**: **NO** ch k > 0 (— 2014) **n** \ge **3**: **OPEN** ch k = 0

• • = • • = •

ZCP. Is $k^{[n]}$ (= $k[X_1, ..., X_n]$) cancellative? **n** = **1**: **YES** (Abhyankar-Eakin-Heinzer (1972)) **n** = **2**: **YES** ch k = 0 (Fujita (1979), Miyanishi-Sugie (1980)) **YES** k perfect (Russell (1981)) **YES** ch $k \ge 0$, k any field (Bhatwadekar— (2015)) **n** \ge **3**: NO ch k > 0 (— 2014) **n** \ge **3**: OPEN ch k = 0

n = 3: Asanuma threefold provides counterexample.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ZCP. Is $k^{[n]}$ (= $k[X_1, ..., X_n]$) cancellative? **n** = **1**: **YES** (Abhyankar-Eakin-Heinzer (1972)) **n** = **2**: **YES** ch k = 0 (Fujita (1979), Miyanishi-Sugie (1980)) **YES** k perfect (Russell (1981)) **YES** ch $k \ge 0$, k any field (Bhatwadekar— (2015)) **n** \ge **3**: NO ch k > 0 (— 2014) **n** \ge **3**: OPEN ch k = 0

n = 3: Asanuma threefold provides counterexample.

Research on ZCP opened up its connection with important problems and concepts in Affine Algebraic Geometry like Embedding Problem and Affine Fibration Problem.

◆ 同 ▶ ◆ 国 ▶ ◆ 国 ▶ …

Exponential Map

An *Exponential map* on a ring *B* is a ring homomorphism (A = B + B + B)

 $\phi_U: B \to B[U]$ satisfying

(i) $\varepsilon_{\circ}\phi_U = 1_B$, where

 $\varepsilon: B[U] \to B$ is the evaluation at U = 0.

 $B \stackrel{\phi_U}{\longrightarrow} B[U] \stackrel{U \to 0}{\longrightarrow} B$

(ii)
$$\phi_{V_{\circ}}\phi_{U} = \phi_{V+U}.$$

 $B \xrightarrow{\phi_{U}} B[U] \xrightarrow{\phi_{V}} B[U, V]$

• • = • • = •

1

Exponential Map

An *Exponential map* on a ring B is a ring homomorphism

 $\phi_U: B \to B[U]$ satisfying

(i) $\varepsilon_{\circ}\phi_U = 1_B$, where

 $\varepsilon: B[U] \to B$ is the evaluation at U = 0.

$$B \stackrel{\phi_U}{\longrightarrow} B[U] \stackrel{U \to 0}{\longrightarrow} B$$

(ii)
$$\phi_{V_o}\phi_U = \phi_{V+U}$$
.
 $B \xrightarrow{\phi_U} B[U] \xrightarrow{\phi_V} B[U, V]$
 $B^{\phi} := \{a \in B \mid \phi(a) = a\} \subseteq B$.
is a ring and is known as ring of ϕ invariants.

• • = • • = •

Э
Exponential Map

An Exponential map on a ring B is a ring homomorphism $\phi_U:B\to B[U] \text{ satisfying}$

(i) $\varepsilon_{\circ}\phi_U = 1_B$, where

 $\varepsilon: B[U] \to B$ is the evaluation at U = 0.

$$B \stackrel{\phi_U}{\longrightarrow} B[U] \stackrel{U \to 0}{\longrightarrow} B$$

(ii) $\phi_{V_o}\phi_U = \phi_{V+U}$. $B \xrightarrow{\phi_U} B[U] \xrightarrow{\phi_V} B[U, V]$ $B^{\phi} := \{a \in B \mid \phi(a) = a\} \subseteq B$. is a ring and is known as ring of ϕ invariants.

Ex: Let $\phi_U : k[X] \to k[X, U]$ be a k-alg homo defined by $\phi_U(X) = X + U$. Then ϕ is an exponential map on k[X].

Exponential Map

An *Exponential map* on a ring B is a ring homomorphism

 $\phi_U: B \to B[U]$ satisfying

(i) $\varepsilon_{\circ}\phi_U = \mathbf{1}_B$, where

 $\varepsilon: B[U] \to B$ is the evaluation at U = 0.

$$B \stackrel{\phi_U}{\longrightarrow} B[U] \stackrel{U \to 0}{\longrightarrow} B$$

(ii) $\phi_{V_o}\phi_U = \phi_{V+U}$. $B \xrightarrow{\phi_U} B[U] \xrightarrow{\phi_V} B[U, V]$ $B^{\phi} := \{a \in B \mid \phi(a) = a\} \subseteq B$. is a ring and is known as ring of ϕ invariants. Ex: Let $\phi_U : k[X] \rightarrow k[X, U]$ be a *k*-alg homo defined by $\phi_U(X) = X + U$. Then ϕ is an exponential map on k[X]. $k[X]^{\phi} = k$.

Let *B* be an integral domain containing \mathbb{Q} . A linear map $D: B \to B$ is called a *Locally nilpotent derivation* on *B* if

•
$$D(xy) = xD(y) + yD(x) \forall x, y \in B.$$

• For each
$$x \in B$$
, $\exists n \ge 1$ s.t. $D^n(x) = 0$.

* E > * E >

Let *B* be an integral domain containing \mathbb{Q} . A linear map $D: B \to B$ is called a *Locally nilpotent derivation* on *B* if

•
$$D(xy) = xD(y) + yD(x) \forall x, y \in B.$$

• For each
$$x \in B$$
, $\exists n \ge 1$ s.t. $D^n(x) = 0$.

$$\mathrm{Ker} D := \{a \in B \mid D(a) = 0\} \subseteq B$$

is a subring of B and is known as Kernel of the Derivation D.

Let *B* be an integral domain containing \mathbb{Q} . A linear map $D: B \to B$ is called a *Locally nilpotent derivation* on *B* if

•
$$D(xy) = xD(y) + yD(x) \forall x, y \in B.$$

• For each
$$x \in B$$
, $\exists n \ge 1$ s.t. $D^n(x) = 0$.

$$\mathrm{Ker} D := \{a \in B \mid D(a) = 0\} \subseteq B$$

is a subring of B and is known as Kernel of the Derivation D. LND: generalisation of "partial derivative".

Let *B* be an integral domain containing \mathbb{Q} . A linear map $D: B \to B$ is called a *Locally nilpotent derivation* on *B* if

•
$$D(xy) = xD(y) + yD(x) \forall x, y \in B.$$

• For each
$$x \in B$$
, $\exists n \ge 1$ s.t. $D^n(x) = 0$.

$$\mathrm{Ker} D := \{a \in B \mid D(a) = 0\} \subseteq B$$

is a subring of B and is known as Kernel of the Derivation D. LND: generalisation of "partial derivative".

Slice Theorem. (Gabriel-Nouazé (1967)) Let D be an LND on B and A = Ker(D). If $\exists b \in B$ s.t. D(b) = 1 (such a b is called *Slice* of the LND), then $B = A[b] = A^{[1]}$.

Let *B* be an integral domain containing \mathbb{Q} . A linear map $D: B \to B$ is called a *Locally nilpotent derivation* on *B* if

•
$$D(xy) = xD(y) + yD(x) \forall x, y \in B.$$

• For each
$$x \in B$$
, $\exists n \ge 1$ s.t. $D^n(x) = 0$.

$$\mathrm{Ker} D := \{a \in B \mid D(a) = 0\} \subseteq B$$

is a subring of B and is known as Kernel of the Derivation D. LND: generalisation of "partial derivative".

Slice Theorem. (Gabriel-Nouazé (1967)) Let D be an LND on B and A = Ker(D). If $\exists b \in B$ s.t. D(b) = 1 (such a b is called *Slice* of the LND), then $B = A[b] = A^{[1]}$. Corollary. $A \subseteq B$. Then TFAE: (I) $B = A^{[1]}$. (II) $\exists D \in \text{LND}(B)$ s.t. $1 \in D(B)$.

Neena Gupta

Let $\mathbb{Q} \subseteq B$. Any exponential map $\phi_U : B \to B[U]$ mapping

$$b\longmapsto b+b_1U+b_2U^2+\ldots$$

induces an LND $D: B \rightarrow B$ defined by

$$D(b)=b_1.$$

Then $b_n = D^n(b)/n!$.

• • = • • = •

Э

Let $\mathbb{Q} \subseteq B$. Any exponential map $\phi_U : B \to B[U]$ mapping

$$b \longmapsto b + b_1 U + b_2 U^2 + \dots$$

induces an LND $D: B \rightarrow B$ defined by

$$D(b) = b_1.$$

Then $b_n = D^n(b)/n!$. Conversely any LND D on B gives rise to an exponential map $\phi_U := \sum_{n>0} \frac{U^n}{n!} D^n$ on B.

• • = • • = •

Let $\mathbb{Q} \subseteq B$. Any exponential map $\phi_U : B \to B[U]$ mapping

$$b\longmapsto b+b_1U+b_2U^2+\ldots$$

induces an LND $D: B \rightarrow B$ defined by

$$D(b) = b_1.$$

Then $b_n = D^n(b)/n!$. Conversely any LND D on B gives rise to an exponential map $\phi_U := \sum_{n \ge 0} \frac{U^n}{n!} D^n$ on B.

 $b \in \operatorname{Ker}(D) \iff \phi_U(b) = b$, i.e., $b \in B^{\phi_U}$.

Let $\mathbb{Q} \subseteq B$. Any exponential map $\phi_U : B \to B[U]$ mapping

$$b \longmapsto b + b_1 U + b_2 U^2 + \dots$$

induces an LND $D: B \rightarrow B$ defined by

$$D(b) = b_1.$$

Then $b_n = D^n(b)/n!$. Conversely any LND D on B gives rise to an exponential map $\phi_U := \sum_{n \ge 0} \frac{U^n}{n!} D^n$ on B.

 $b \in \operatorname{Ker}(D) \iff \phi_U(b) = b$, i.e., $b \in B^{\phi_U}$.

Thus if B is a ring containing \mathbb{Q} , Exp map on $B \iff \text{LND}$ of B.

4 3 b 4 3 b

Let $\mathbb{Q} \subseteq B$. Any exponential map $\phi_U : B \to B[U]$ mapping

$$b\longmapsto b+b_1U+b_2U^2+\ldots$$

induces an LND $D: B \rightarrow B$ defined by

$$D(b) = b_1.$$

Then $b_n = D^n(b)/n!$. Conversely any LND D on B gives rise to an exponential map $\phi_U := \sum_{n \ge 0} \frac{U^n}{n!} D^n$ on B.

 $b \in \operatorname{Ker}(D) \iff \phi_U(b) = b$, i.e., $b \in B^{\phi_U}$.

Thus if B is a ring containing \mathbb{Q} , Exp map on $B \iff \text{LND}$ of B.

Ring of invariants \iff Ker of D.

Some invariants

B: k-algebra $\operatorname{Exp}_k(B)$: set of all k-linear exponential maps on B $\operatorname{LND}_k(B)$: set of all locally nilpotent k-derivations.

Makar-Limanov invariant $ML(B) := \bigcap_{\phi \in Exp_k(B)} B^{\phi}$.

Some invariants

B: k-algebra $\operatorname{Exp}_k(B)$: set of all k-linear exponential maps on B $\operatorname{LND}_k(B)$: set of all locally nilpotent k-derivations.

Makar-Limanov invariant $ML(B) := \bigcap_{\phi \in Exp_k(B)} B^{\phi}$.

Derksen invariant $DK(B) = k[B^{\phi} \mid \phi \in Exp_k(B) \setminus \{0\}]$

Some invariants

B: k-algebra $\operatorname{Exp}_k(B)$: set of all k-linear exponential maps on B $\operatorname{LND}_k(B)$: set of all locally nilpotent k-derivations.

Makar-Limanov invariant
$$ML(B) := \bigcap_{\phi \in Exp_k(B)} B^{\phi}$$
.

Derksen invariant $DK(B) = k[B^{\phi} \mid \phi \in Exp_k(B) \setminus \{0\}]$ If $\mathbb{Q} \subseteq k \subseteq B$, then

$$\mathsf{ML}(B) = \bigcap_{D \in \mathrm{LND}_k(B)} \mathrm{Ker}(D).$$

 $\mathsf{DK}(B) = k[\operatorname{Ker}(D) \mid D \in \operatorname{LND}_k(B) \setminus \{0\}].$

Let *B* be a *k*-algebra and $\text{LND}^*(B) := \{D \in \text{LND}_k(B) | D \text{ has a slice}\}$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let *B* be a *k*-algebra and $LND^*(B) := \{D \in LND_k(B) | D \text{ has a slice}\}$ The *modified Derksen invariant*, $DK^*(B)$ of *B* is

 $\mathsf{DK}^*(B) = k[\operatorname{Ker}(D)|D \in \operatorname{LND}^*_k(B)]$

and the modified Makar-Limanov invariant, $ML^*(B)$ of B is

$$\mathsf{ML}^*(B) = \bigcap_{D \in \mathrm{LND}^*(B)} \mathrm{Ker}(D).$$

Let *B* be a *k*-algebra and $LND^*(B) := \{D \in LND_k(B) | D \text{ has a slice}\}$ The *modified Derksen invariant*, $DK^*(B)$ of *B* is

 $\mathsf{DK}^*(B) = k[\operatorname{Ker}(D)|D \in \operatorname{LND}^*_k(B)]$

and the modified Makar-Limanov invariant, $ML^*(B)$ of B is

$$\mathsf{ML}^*(B) = igcap_{D \in \mathrm{LND}^*(B)} \mathrm{Ker}(D).$$

Lemma: (i) $DK^*(k^{[n]}) = DK(k^{[n]}) = k^{[n]}$ if n > 1.

Let *B* be a *k*-algebra and $LND^*(B) := \{D \in LND_k(B) | D \text{ has a slice}\}$ The modified Derksen invariant, $DK^*(B)$ of *B* is

 $\mathsf{DK}^*(B) = k[\operatorname{Ker}(D)|D \in \operatorname{LND}^*_k(B)]$

and the modified Makar-Limanov invariant, $ML^*(B)$ of B is

$$\mathsf{ML}^*(B) = igcap_{D \in \mathrm{LND}^*(B)} \mathrm{Ker}(D).$$

Lemma: (i)
$$DK^*(k^{[n]}) = DK(k^{[n]}) = k^{[n]}$$
 if $n > 1$.
(ii) $ML(k^{[n]}) = ML^*(k^{[n]}) = k$ for $n \ge 1$

Let *B* be a *k*-algebra and $LND^*(B) := \{D \in LND_k(B) | D \text{ has a slice}\}$ The modified Derksen invariant, DK^{*}(B) of *B* is

 $\mathsf{DK}^*(B) = k[\operatorname{Ker}(D)|D \in \operatorname{LND}^*_k(B)]$

and the modified Makar-Limanov invariant, $ML^*(B)$ of B is

$$\mathsf{ML}^*(B) = \bigcap_{D \in \mathrm{LND}^*(B)} \mathrm{Ker}(D).$$

Lemma: (i) $DK^*(k^{[n]}) = DK(k^{[n]}) = k^{[n]}$ if n > 1. (ii) $ML(k^{[n]}) = ML^*(k^{[n]}) = k$ for $n \ge 1$ Pf: Let $B = k[X_1, ..., X_n]$ and $\phi_i : B \to B[U]$ be k-algebra

homo defined by $\phi_i(X_j) = X_j + \delta_{ij}U$, where $1 \le i \le n$.

Let *B* be a *k*-algebra and $LND^*(B) := \{D \in LND_k(B) | D \text{ has a slice}\}$ The *modified Derksen invariant*, DK^{*}(*B*) of *B* is

 $\mathsf{DK}^*(B) = k[\operatorname{Ker}(D)|D \in \operatorname{LND}^*_k(B)]$

and the modified Makar-Limanov invariant, $ML^*(B)$ of B is

$$\mathsf{ML}^*(B) = \bigcap_{D \in \mathrm{LND}^*(B)} \mathrm{Ker}(D).$$

Lemma: (i)
$$DK^*(k^{[n]}) = DK(k^{[n]}) = k^{[n]}$$
 if $n > 1$.
(ii) $ML(k^{[n]}) = ML^*(k^{[n]}) = k$ for $n \ge 1$

Pf: Let $B = k[X_1, ..., X_n]$ and $\phi_i : B \to B[U]$ be k-algebra homo defined by $\phi_i(X_j) = X_j + \delta_{ij}U$, where $1 \le i \le n$. Then $B^{\phi_i} := k[X_1, ..., X_{i-1}, X_{i+1}, ..., X_n]$. Hence $\mathsf{DK}(B) = B$. Further as $k \subseteq \mathsf{ML}(B) \subseteq \bigcap_{1 \le i \le n} B^{\phi_i} = k$, we have $\mathsf{ML}^*(k^{[n]}) = k$.

Characterisation Problem: dim ≤ 2

Some characterisations of $\mathbb{A}^1_{\mathbb{C}}$

- The only smooth contractible affine curve is $\mathbb{A}^1_{\mathbb{C}}$.
- The only one-dim affine UFD with trivial units is $\mathbb{C}^{[1]}.$

Topological characterisation of $\mathbb{A}^2_{\mathbb{C}}$ (C. P. Ramanujam (1971)):

The only smooth contractible affine surface which is simply connected at infinity is A²_C.
 In particular, any smooth contractible affine surface homeo to ℝ⁴ is A²_C.

Algebraic characterisation of $\mathbb{A}^2_{\mathbb{C}}$ (Miyanishi (1975)):

 The only two-dim factorial affine C-domain A with trivial units s.t. Spec(A) contains a cylinder-like open set is C^[2].

Application (Fujita-Miyanishi-Sugie): $\mathbb{A}^2_{\mathbb{C}}$ is cancellative. Gurjar (2002) gave a proof extending Ramanujam's ideas.

New Algebraic Characterisations of \mathbb{A}^2 and \mathbb{A}^3

Algebraic characterisation of \mathbb{A}_k^2 (Dasgupta — (2019)) Let *B* be an affine *k*-domain of dim 2. TFAE:

(i)
$$B = k^{[2]}$$
.
(ii) $ML^*(B) = k$.
(iii) $ML(B) = k$ and $ML^*(B) \neq B$.

Remark: Thm does not hold when dim B = 3.

Algebraic characterisation of \mathbb{A}_k^2 (Dasgupta — (2019)) Let *B* be an affine *k*-domain of dim 2. TFAE:

(i)
$$B = k^{[2]}$$
.
(ii) $ML^*(B) = k$.
(iii) $ML(B) = k$ and $ML^*(B) \neq B$.

Remark: Thm does not hold when dim B = 3.

Algebraic characterisation of \mathbb{A}^3_k (Dasgupta — (2019)) k alg closed field and B an affine UED of dim 3 TEAF:

(i)
$$B = k^{[3]}$$
.
(ii) $ML^*(B) = k$.
(iii) $ML(B) = k$ and $ML^*(B) \neq B$.
Remark: Thm does not hold when dim $B = 4$.

Swapnil Lokhande, Animesh Lahiri, Prosenjit Das and Nikhilesh Dasgupta at St. Petersburg University, Russia

Neena Gupta ISI, Kolkata Polynomial Rings and Coordinates

 $\langle \Xi \rangle$

\mathbb{A}^n -forms

k a field of characteristic $p \ge 0$ with algebraic closure \bar{k} . A *k*-algebra *A* is called an \mathbb{A}^n -form over *k* if

$$A\otimes_k \bar{k}=\bar{k}^{[n]}.$$

Defn: An \mathbb{A}^n -form A over k is said to be *trivial* if $A = k^{[n]}$.

\mathbb{A}^n -forms

k a field of characteristic $p \ge 0$ with algebraic closure \bar{k} . A *k*-algebra *A* is called an \mathbb{A}^n -form over *k* if

$$A\otimes_k \bar{k}=\bar{k}^{[n]}.$$

Defn: An \mathbb{A}^n -form A over k is said to be *trivial* if $A = k^{[n]}$. If k is not a perfect field, then \mathbb{A}^n -forms need not be trivial.

\mathbb{A}^n -forms

k a field of characteristic $p \ge 0$ with algebraic closure \bar{k} . A *k*-algebra *A* is called an \mathbb{A}^n -form over *k* if

$$A\otimes_k \bar{k}=\bar{k}^{[n]}.$$

Defn: An \mathbb{A}^n -form A over k is said to be *trivial* if $A = k^{[n]}$. If k is not a perfect field, then \mathbb{A}^n -forms need not be trivial.

Example of a non-trivial \mathbb{A}^1 -form: Suppose $k \neq k^p$ and $\beta \in k \setminus k^p$. Let $\alpha \in \overline{k}$ be such that $\beta = \alpha^p$, and

$$A = \frac{k[X, Y]}{(Y^p - X - \beta X^p)}.$$

Then, $A \otimes_k \bar{k} = \bar{k}^{[1]}$ but $A \neq k^{[1]}$.

Question: Is any \mathbb{A}^n -form A over k necessarily trivial?

+ E + < E +</p>

Question: Is any \mathbb{A}^n -form A over k necessarily trivial?

• n = 1: YES (Classical).

* E > * E >

Question: Is any \mathbb{A}^n -form A over k necessarily trivial?

- n = 1: YES (Classical).
- *n* = 2: **YES** (T. Kambayasi (1975)).

* E > * E >

Question: Is any \mathbb{A}^n -form A over k necessarily trivial?

- n = 1: YES (Classical).
- *n* = 2: **YES** (T. Kambayasi (1975)).
- *n* ≥ 3: OPEN

Partial Affirmative Answers when n = 3 and:

- (i) A admits a fixed point free locally nilpotent derivations (Daigle–Kaliman (2009)).
- (ii) A contains an element f which is a coordinate in $A \otimes_k \bar{k}$ (Daigle–Kaliman (2009)).
- (iii) A admits an effective action of a reductive algebraic k-group of positive dimension (Koras-Russell (2013)).
- (iv) A admits a non-confluent action of a unipotent group of dimension two (Gurjar–Masuda–Miyanishi).

- k: field of characteristic zero
- \bar{k} : algebraic closure of k
- A: an affine k-domain

Suppose

$$A\otimes_k \bar{k}=\bar{k}^{[3]},$$

and there exists a locally nilpotent derivation D on A satisfying rk $(D \otimes 1_{\bar{k}}) \leq 2$. Then

$$A=k^{[3]}.$$

r-divisible

For $\mathbf{r} = (r_1, \ldots, r_m) \in \mathbb{Z}_{>0}^m$, $\alpha \neq 0 \in k^{[m]}$ is called **r**-divisible if

For m = 1, $\alpha \in k[X_1]$ is $(\mathbf{r_1})$ -divisible if

 $\alpha = X_1^{\mathbf{r}_1} \alpha_1(X_1) = X_1^{\mathbf{r}_1}(X_1\beta_1 + \alpha_1(0)), \quad \alpha_2 := \alpha_1(0)) \in k^*$

r-divisible

For $\mathbf{r} = (r_1, \ldots, r_m) \in \mathbb{Z}_{>0}^m$, $\alpha \neq 0 \in k^{[m]}$ is called **r**-divisible if

For m = 1, $\alpha \in k[X_1]$ is (**r**₁)-divisible if

$$\alpha = X_1^{r_1} \alpha_1(X_1) = X_1^{r_1}(X_1\beta_1 + \alpha_1(0)), \quad \alpha_2 := \alpha_1(0)) \in k^*$$

For m = 2, $\alpha \in k[X_1, X_2]$ is $(\mathbf{r_1}, \mathbf{r_2})$ -divisible in the system of coordinates X_1, X_2 if

$$\alpha = X_1^{\mathbf{r}_1} \alpha_1(X_1, X_2) = X_1^{\mathbf{r}_1}(X_1\beta_1 + X_2^{\mathbf{r}_2}(X_2\beta_2 + \alpha_3)), \quad \alpha_3 \in k^*$$

r-divisible

For $\mathbf{r} = (r_1, \ldots, r_m) \in \mathbb{Z}_{>0}^m$, $\alpha \neq 0 \in k^{[m]}$ is called **r**-divisible if

For m = 1, $\alpha \in k[X_1]$ is $(\mathbf{r_1})$ -divisible if

$$\alpha = X_1^{r_1} \alpha_1(X_1) = X_1^{r_1}(X_1\beta_1 + \alpha_1(0)), \quad \alpha_2 := \alpha_1(0)) \in k^*$$

For m = 2, $\alpha \in k[X_1, X_2]$ is $(\mathbf{r_1}, \mathbf{r_2})$ -divisible in the system of coordinates X_1, X_2 if

 $\alpha = X_1^{\mathbf{r}_1} \alpha_1(X_1, X_2) = X_1^{\mathbf{r}_1}(X_1\beta_1 + X_2^{\mathbf{r}_2}(X_2\beta_2 + \alpha_3)), \quad \alpha_3 \in k^*$ $\alpha = X_1 X_2^2(X_1 + X_2^2)^2 \text{ is } (\mathbf{2}, \mathbf{3}) \text{-divisible in } X_2, X_1 \text{ and is }$ $(\mathbf{1}, \mathbf{6}) \text{-divisible in } X_1, X_2.$

医子宫医子宫下
r-divisible

For $\mathbf{r} = (r_1, \ldots, r_m) \in \mathbb{Z}_{>0}^m$, $\alpha \neq 0 \in k^{[m]}$ is called **r**-divisible if

For m = 1, $\alpha \in k[X_1]$ is (**r**₁)-divisible if

$$\alpha = X_1^{\mathbf{r}_1} \alpha_1(X_1) = X_1^{\mathbf{r}_1}(X_1\beta_1 + \alpha_1(0)), \quad \alpha_2 := \alpha_1(0)) \in k^*$$

For m = 2, $\alpha \in k[X_1, X_2]$ is $(\mathbf{r_1}, \mathbf{r_2})$ -divisible in the system of coordinates X_1, X_2 if

$$\alpha = X_1^{\mathbf{r}_1} \alpha_1(X_1, X_2) = X_1^{\mathbf{r}_1}(X_1\beta_1 + X_2^{\mathbf{r}_2}(X_2\beta_2 + \alpha_3)), \quad \alpha_3 \in k^*$$

$$\alpha = X_1X_2^2(X_1 + X_2^2)^2 \text{ is } (\mathbf{2}, \mathbf{3}) \text{-divisible in } X_2, X_1 \text{ and is}$$

$$(\mathbf{1}, \mathbf{6}) \text{-divisible in } X_1, X_2.$$

For m = 3, $\alpha \in k[X_1, X_2, X_3]$ is $(\mathbf{r_1}, \mathbf{r_2}, \mathbf{r_3})$ -divisible in the system of coordinates X_1, X_2, X_3 if

$$\alpha = X_1^{\mathbf{r}_1}(X_1\beta_1 + X_2^{\mathbf{r}_2}(X_2\beta_2 + X_3^{\mathbf{r}_3}(X_3\beta_3 + \alpha_4))), \quad \alpha_4 \in k^*$$

k: infinite field of any characteristic, $B := k[X_1, \dots, X_m, Y, Z, T],$ $\mathbf{r} := (r_1, \dots, r_m) \in \mathbb{Z}_{>1}^m,$ $H := \alpha(X_1, \dots, X_m)Y - f(Z, T) - X_1\beta(X_1, \dots, X_m, Z, T),$ such that $f \neq 0$ and α is **r**-divisible in $\{X_1, \dots, X_m\}.$

k: infinite field of any characteristic, $B:=k[X_1,\ldots,X_m,Y,Z,T],$ $\mathbf{r}:=(r_1,\ldots,r_m)\in\mathbb{Z}_{>1}^m,$ $H:=\alpha(X_1,\ldots,X_m)Y-f(Z,T)-X_1\beta(X_1,\ldots,X_m,Z,T),$ such that $f\neq 0$ and α is \mathbf{r} -divisible in $\{X_1,\ldots,X_m\}$. Let

$$A:=\frac{k[X_1,\ldots,X_m,Y,Z,T]}{(\alpha(X_1,\ldots,X_m)Y-f(Z,T)-X_1\beta(X_1,\ldots,X_m,Z,T)))}.$$

k: infinite field of any characteristic, $B := k[X_1, \dots, X_m, Y, Z, T],$ $\mathbf{r} := (r_1, \dots, r_m) \in \mathbb{Z}_{>1}^m,$ $H := \alpha(X_1, \dots, X_m)Y - f(Z, T) - X_1\beta(X_1, \dots, X_m, Z, T),$ such that $f \neq 0$ and α is **r**-divisible in $\{X_1, \dots, X_m\}$. Let

$$A:=\frac{k[X_1,\ldots,X_m,Y,Z,T]}{(\alpha(X_1,\ldots,X_m)Y-f(Z,T)-X_1\beta(X_1,\ldots,X_m,Z,T)))}.$$

Suppose either ML(A) = k or DK(A) = A.

k: infinite field of any characteristic, $B:=k[X_1,\ldots,X_m,Y,Z,T],$ $\mathbf{r}:=(r_1,\ldots,r_m)\in\mathbb{Z}_{>1}^m,$ $H:=\alpha(X_1,\ldots,X_m)Y-f(Z,T)-X_1\beta(X_1,\ldots,X_m,Z,T),$ such that $f\neq 0$ and α is **r**-divisible in $\{X_1,\ldots,X_m\}$. Let

$$A:=\frac{k[X_1,\ldots,X_m,Y,Z,T]}{(\alpha(X_1,\ldots,X_m)Y-f(Z,T)-X_1\beta(X_1,\ldots,X_m,Z,T)))}.$$

Suppose either ML(A) = k or DK(A) = A. Then there exist Z_1, T_1 of k[Z, T] and $a_0, a_1 \in k^{[1]}$ such that

 $k[Z,T] = k[Z_1,T_1]$

and

$$f(Z, T) = a_0(Z_1) + a_1(Z_1)T_1.$$

I. Let

 $H := X^{2}(1+X)^{2}Y + Z^{2} + T^{3} + Xa(X, Z, T)$

(日本) (日本) (日本)

Э

I. Let

$$H := X^{2}(1+X)^{2}Y + Z^{2} + T^{3} + Xa(X, Z, T)$$

 $X^{2}(1+X)^{2}$ is (2)-divisible in $\{X\}$ and $f(Z, T) = Z^{2} + T^{3}$ which cannot be a linear polynomial.

I. Let

$$H := X^{2}(1+X)^{2}Y + Z^{2} + T^{3} + Xa(X, Z, T)$$

 $X^{2}(1 + X)^{2}$ is (2)-divisible in $\{X\}$ and $f(Z, T) = Z^{2} + T^{3}$ which cannot be a linear polynomial.

Thus A = k[X, Y, Z, T]/(H) is NOT a polynomial ring, even if A is a 'nice' ring.

伺下 イヨト イヨト

I. Let

$$H := X^{2}(1+X)^{2}Y + Z^{2} + T^{3} + Xa(X, Z, T)$$

 $X^{2}(1+X)^{2}$ is (2)-divisible in $\{X\}$ and $f(Z, T) = Z^{2} + T^{3}$ which cannot be a linear polynomial.

Thus A = k[X, Y, Z, T]/(H) is NOT a polynomial ring, even if A is a 'nice' ring.

II. Let

 $H := X_1 X_2^2 (X_1 + X_2^2)^2 Y + Z^2 + T^3 - X_2 \beta (X_1, X_2, Z, T)$

I. Let

$$H := X^{2}(1+X)^{2}Y + Z^{2} + T^{3} + Xa(X, Z, T)$$

 $X^{2}(1+X)^{2}$ is (2)-divisible in $\{X\}$ and $f(Z, T) = Z^{2} + T^{3}$ which cannot be a linear polynomial.

Thus A = k[X, Y, Z, T]/(H) is NOT a polynomial ring, even if A is a 'nice' ring.

II. Let

 $H := X_1 X_2^2 (X_1 + X_2^2)^2 Y + Z^2 + T^3 - X_2 \beta (X_1, X_2, Z, T)$

 $X_1X_2^2(X_1 + X_2^2)^2$ is (2, 3)-divisible in $\{X_2, X_1\}$ and $f(Z, T) = Z^2 + T^3$ which cannot be a linear polynomial.

向下 イヨト イヨト

I. Let

$$H := X^{2}(1+X)^{2}Y + Z^{2} + T^{3} + Xa(X, Z, T)$$

 $X^{2}(1+X)^{2}$ is (2)-divisible in $\{X\}$ and $f(Z, T) = Z^{2} + T^{3}$ which cannot be a linear polynomial.

Thus A = k[X, Y, Z, T]/(H) is NOT a polynomial ring, even if A is a 'nice' ring.

II. Let

 $H := X_1 X_2^2 (X_1 + X_2^2)^2 Y + Z^2 + T^3 - X_2 \beta (X_1, X_2, Z, T)$

 $X_1X_2^2(X_1 + X_2^2)^2$ is (2,3)-divisible in $\{X_2, X_1\}$ and $f(Z, T) = Z^2 + T^3$ which cannot be a linear polynomial. Thus $A = k[X_1, X_2, Y, Z, T]/(H)$ is NOT a polynomial ring even if A is a 'nice' ring.

Thm (Ghosh — Pal)

k: field of any characteristic, $B := k[X_1, \dots, X_m, Y, Z, T],$ $\mathbf{r} := (r_1, \dots, r_m) \in \mathbb{Z}_{>1}^m,$ $H := \alpha(X_1, \dots, X_m)Y - f(Z, T) - h(X_1, \dots, X_m, Z, T),$ such that $f \neq 0$ and every prime divisor of α divides h.

3 ∃ ≥ < ∃ ≥</p>

Thm (Ghosh — Pal)

k: field of any characteristic, $B := k[X_1, \dots, X_m, Y, Z, T],$ $\mathbf{r} := (r_1, \dots, r_m) \in \mathbb{Z}_{>1}^m,$ $H := \alpha(X_1, \dots, X_m)Y - f(Z, T) - h(X_1, \dots, X_m, Z, T),$ such that $f \neq 0$ and every prime divisor of α divides h. Let

$$A:=\frac{k[X_1,\ldots,X_m,Y,Z,T]}{(\alpha(X_1,\ldots,X_m)Y-f(Z,T)-h(X_1,\ldots,X_m,Z,T))}.$$

Suppose α is **r**-divisible in the system of coordinates $\{X_1 - \lambda_1, \ldots, X_m - \lambda_m\}$, for some $\lambda_i \in \overline{k}$ s.t. $k_1 := k(\lambda_1, \ldots, \lambda_m)$ is separable over k.

イヨトイヨト

Thm (Ghosh — Pal)

k: field of any characteristic, $B := k[X_1, \dots, X_m, Y, Z, T],$ $\mathbf{r} := (r_1, \dots, r_m) \in \mathbb{Z}_{>1}^m,$ $H := \alpha(X_1, \dots, X_m)Y - f(Z, T) - h(X_1, \dots, X_m, Z, T),$ such that $f \neq 0$ and every prime divisor of α divides h. Let

$$A:=\frac{k[X_1,\ldots,X_m,Y,Z,T]}{(\alpha(X_1,\ldots,X_m)Y-f(Z,T)-h(X_1,\ldots,X_m,Z,T))}.$$

Suppose α is **r**-divisible in the system of coordinates $\{X_1 - \lambda_1, \ldots, X_m - \lambda_m\}$, for some $\lambda_i \in \overline{k}$ s.t. $k_1 := k(\lambda_1, \ldots, \lambda_m)$ is separable over k.

Let x_1, \ldots, x_m be the images of X_1, \ldots, X_m in A respectively and $E := k[x_1, \ldots, x_m]$. Then the following statements are equivalent:

・ 同 ト ・ ヨ ト ・ ヨ ト …

•
$$k[X_1, ..., X_m, Y, Z, T] = k[X_1, ..., X_m, H]^{[2]}$$
.
• $k[X_1, ..., X_m, Y, Z, T] = k[H]^{[m+2]}$.
• $A = k[x_1, ..., x_m]^{[2]}$.
• $A = k^{[m+2]}$.
• $k[Z, T] = k[f(Z, T)]^{[1]}$.
• $A^{[I]} = k^{[I+m+2]}$ for some $I \ge 0$ and $ML(A) = k$.
• $f(Z, T)$ is a line in $k[Z, T]$ and $ML(A) = k$.
• A is an \mathbb{A}^2 -fibration over E and $ML(A) = k$.
• $A \otimes_k \bar{k}$ is a UFD, $ML(A) = k$ and $\left(\frac{k_1[Z,T]}{(f(Z,T))}\right)^* = \bar{k}^*$.
• $A^{[I]} = k^{[I+m+2]}$ for some $I \ge 0$ and $DK(A) = A$.
• $f(Z, T)$ is a line in $k[Z, T]$ and $DK(A) = A$.
• $A \otimes_k \bar{k}$ is a UFD, $DK(A) = A$ and $\left(\frac{k_1[Z,T]}{(f(Z,T))}\right)^* = \bar{k}^*$.

Ξ

900

The family of hypersurfaces given by

 $(X_1^{r_1+1} + X_1^{r_1}X_2^{r_2+1} + \dots + X_1^{r_1}\dots X_{m-1}^{r_{m-1}}X_m^{r_m+1})Y - f(Z, T),$ for $r_i \ge 2, 1 \le i \le m$ and

The family of hypersurfaces given by

 $(X_1^{r_1+1} + X_1^{r_1}X_2^{r_2+1} + \dots + X_1^{r_1}\dots X_{m-1}^{r_{m-1}}X_m^{r_m+1})Y - f(Z, T),$ for $r_i \ge 2, 1 \le i \le m$ and

 $a_1(X_1)\cdots a_m(X_m)Y-f(Z,T)-h(X_1,\ldots,X_m,Z,T),$

where every prime divisor of $a_1(X_1) \cdots a_m(X_m)$ in $k[X_1, \ldots, X_m]$ divides h, and every $a_i(X_i)$ has a separable multiple root λ_i over k are included in the family of hypersurfaces mentioned in this Theorem.

伺 ト イヨ ト イヨ ト 二 ヨ

The family of hypersurfaces given by

 $(X_1^{r_1+1} + X_1^{r_1}X_2^{r_2+1} + \dots + X_1^{r_1}\dots X_{m-1}^{r_{m-1}}X_m^{r_m+1})Y - f(Z, T),$ for $r_i \ge 2, 1 \le i \le m$ and

 $a_1(X_1)\cdots a_m(X_m)Y-f(Z,T)-h(X_1,\ldots,X_m,Z,T),$

where every prime divisor of $a_1(X_1) \cdots a_m(X_m)$ in $k[X_1, \ldots, X_m]$ divides h, and every $a_i(X_i)$ has a separable multiple root λ_i over k are included in the family of hypersurfaces mentioned in this Theorem.

This gives a unified treatment of several apparently different-looking questions which have been of long interest to mathematicians (including Cancellation, Epimorphism and Fibration problems).

(日) (日) (日) (日)

k: a field of ANY characteristic, $\mathbf{r}_i > \mathbf{1}$, for $1 \le i \le m$, $m \ge 1$.

$$A := K[X_1,\ldots,X_m,Y,Z,T]/(aY-F),$$

where $a = \pi_1^{s_1} \dots \pi_n^{s_n} \in k[X_1, \dots, X_m]$ is **r**-divisible where $\mathbf{r} := (r_1, \dots, r_m), \ \pi_i$'s primes, $F := f(Z, T) + (\pi_1 \cdots \pi_n)g(X_1, \dots, X_m, Z, T), \ H = aY - F.$

k: a field of ANY characteristic, $\mathbf{r_i} > \mathbf{1}$, for $1 \le i \le m$, $m \ge 1$.

$$A := K[X_1,\ldots,X_m,Y,Z,T]/(aY-F),$$

where $a = \pi_1^{s_1} \dots \pi_n^{s_n} \in k[X_1, \dots, X_m]$ is **r**-divisible where $\mathbf{r} := (r_1, \dots, r_m), \ \pi_i$'s primes, $F := f(Z, T) + (\pi_1 \dots \pi_n)g(X_1, \dots, X_m, Z, T), \ H = aY - F.$ • $A = k^{[m+2]}$ if and only if $k[Z, T] = k[f(Z, T)]^{[1]}$.

k: a field of ANY characteristic, $\mathbf{r_i} > \mathbf{1}$, for $1 \le i \le m$, $m \ge 1$.

$$A:=K[X_1,\ldots,X_m,Y,Z,T]/(aY-F),$$

where $a = \pi_1^{s_1} \dots \pi_n^{s_n} \in k[X_1, \dots, X_m]$ is **r**-divisible where $\mathbf{r} := (r_1, \dots, r_m), \ \pi_i$'s primes, $F := f(Z, T) + (\pi_1 \cdots \pi_n)g(X_1, \dots, X_m, Z, T), \ H = aY - F.$

• $A = k^{[m+2]}$ if and only if $k[Z, T] = k[f(Z, T)]^{[1]}$.

Provides a general framework for understanding the non-triviality of Russell-Koras threefold $x^2y + x + z^2 + t^3 = 0$ and the generalised Asanuma varieties.

k: a field of ANY characteristic, $\mathbf{r_i} > \mathbf{1}$, for $1 \le i \le m$, $m \ge 1$.

$$A:=K[X_1,\ldots,X_m,Y,Z,T]/(aY-F),$$

where $a = \pi_1^{s_1} \dots \pi_n^{s_n} \in k[X_1, \dots, X_m]$ is **r**-divisible where $\mathbf{r} := (r_1, \dots, r_m), \ \pi_i$'s primes, $F := f(Z, T) + (\pi_1 \cdots \pi_n)g(X_1, \dots, X_m, Z, T), \ H = aY - F.$

• $A = k^{[m+2]}$ if and only if $k[Z, T] = k[f(Z, T)]^{[1]}$.

Provides a general framework for understanding the non-triviality of Russell-Koras threefold $x^2y + x + z^2 + t^3 = 0$ and the generalised Asanuma varieties.

• If
$$A = k^{[m+2]}$$
, then

$$k[X_1,...,X_m,Y,Z,T] = k[X_1,...,X_m,H]^{[2]}$$

k: a field of ANY characteristic, $\mathbf{r_i} > \mathbf{1}$, for $1 \le i \le m$, $m \ge 1$.

$$A := K[X_1,\ldots,X_m,Y,Z,T]/(aY-F),$$

where $a = \pi_1^{s_1} \dots \pi_n^{s_n} \in k[X_1, \dots, X_m]$ is **r**-divisible where $\mathbf{r} := (r_1, \dots, r_m), \ \pi_i$'s primes, $F := f(Z, T) + (\pi_1 \cdots \pi_n)g(X_1, \dots, X_m, Z, T), \ H = aY - F.$

• $A = k^{[m+2]}$ if and only if $k[Z, T] = k[f(Z, T)]^{[1]}$.

Provides a general framework for understanding the non-triviality of Russell-Koras threefold $x^2y + x + z^2 + t^3 = 0$ and the generalised Asanuma varieties.

• If $A = k^{[m+2]}$, then

$$k[X_1,\ldots,X_m,Y,Z,T] = k[X_1,\ldots,X_m,H]^{[2]}.$$

Proves a partial case of the Abhyankar-Sathaye Conjecture. Extends partially Sathaye-Russell theorem to the case $n \ge 3$.

k: a field of ANY characteristic, $\mathbf{r_i} > \mathbf{1}$, for $1 \le i \le m$, $m \ge 1$.

$$A := k[X_1,\ldots,X_m,Y,Z,T]/(aY-F),$$

where $a = \pi_1^{s_1} \dots \pi_n^{s_n} \in k[X_1, \dots, X_m]$ is **r**-divisible, $\mathbf{r} := (r_1, \dots, r_m), \ \pi_i$'s primes,

 $F := f(Z,T) + (\pi_1 \cdots \pi_n)g(X_1, \ldots, X_m, Z, T), H = aY - F.$

k: a field of ANY characteristic, $\mathbf{r_i} > \mathbf{1}$, for $1 \le i \le m$, $m \ge 1$.

$$A := k[X_1,\ldots,X_m,Y,Z,T]/(aY-F),$$

where $a = \pi_1^{s_1} \dots \pi_n^{s_n} \in k[X_1, \dots, X_m]$ is **r**-divisible, $\mathbf{r} := (r_1, \dots, r_m), \ \pi_i$'s primes,

 $F := f(Z,T) + (\pi_1 \cdots \pi_n)g(X_1, \ldots, X_m, Z, T), H = aY - F.$

•
$$A = k^{[m+2]}$$
 if and only if $A = k[x_1, ..., x_m]^{[2]}$.

k: a field of ANY characteristic, $\mathbf{r_i} > \mathbf{1}$, for $1 \le i \le m$, $m \ge 1$.

$$A := k[X_1,\ldots,X_m,Y,Z,T]/(aY-F),$$

where $a = \pi_1^{s_1} \dots \pi_n^{s_n} \in k[X_1, \dots, X_m]$ is **r**-divisible, $\mathbf{r} := (r_1, \dots, r_m), \ \pi_i$'s primes,

 $F := f(Z,T) + (\pi_1 \cdots \pi_n)g(X_1, \ldots, X_m, Z, T), H = aY - F.$

- $A = k^{[m+2]}$ if and only if $A = k[x_1, ..., x_m]^{[2]}$.
- A is a non-trivial A²-fibration over k[x₁,..., x_m] if and only if f(Z, T) is a non-trivial line.

Thm (— 2014)

Let R be a ring, $\pi_1, \pi_2, \ldots, \pi_n \in R$, $\pi := \pi_1 \pi_2 \cdots \pi_n$ and $G(Z, T) \in R[Z, T]$ be such that

$$R[Z,T]/(\pi,G(Z,T))\cong (R/\pi)^{[1]}.$$

Let

$$D := R[Z, T, Y]/(\pi_1^{s_1}\pi_2^{s_2}\cdots\pi_n^{s_n}Y - G(Z, T))$$

for any set of positive integers s_1, \ldots, s_n . Then

$$D^{[1]} = R^{[3]}$$

• • = • • = •

Thm (Ghosh – Pal)

Let k be a field,

$$a = \pi_1^{s_1} \dots \pi_n^{s_n} \in k[X_1, \dots, X_m]$$

be an **r**-divisible polynomial where $\mathbf{r} := (r_1, \ldots, r_m)$, $\mathbf{r}_i > \mathbf{1}$ and

$$F = f(Z,T) + (\pi_1 \cdots \pi_m)g(X_1, \ldots, X_m, Z, T),$$

where f(Z, T) is a line. Let

$$A = K[X_1,\ldots,X_m,Y,Z,T]/(aY-F).$$

Then $A^{[1]} = k^{[m+3]}$.

Э

Thm (Ghosh – Pal)

Let k be a field,

$$a = \pi_1^{s_1} \dots \pi_n^{s_n} \in k[X_1, \dots, X_m]$$

be an **r**-divisible polynomial where $\mathbf{r} := (r_1, \ldots, r_m)$, $\mathbf{r}_i > \mathbf{1}$ and

$$F = f(Z,T) + (\pi_1 \cdots \pi_m)g(X_1, \ldots, X_m, Z, T),$$

where f(Z, T) is a line. Let

$$A = K[X_1, \ldots, X_m, Y, Z, T]/(aY - F).$$

Then $A^{[1]} = k^{[m+3]}$. Further if $k[Z, T] \neq k[f(Z, T)]^{[1]}$ then $A \ncong k^{[m+2]}$.

• • = • • = •

Thm (Ghosh – Pal)

Let k be a field,

$$a = \pi_1^{s_1} \dots \pi_n^{s_n} \in k[X_1, \dots, X_m]$$

be an **r**-divisible polynomial where $\mathbf{r} := (r_1, \ldots, r_m)$, $\mathbf{r_i} > \mathbf{1}$ and

$$F = f(Z, T) + (\pi_1 \cdots \pi_m)g(X_1, \ldots, X_m, Z, T)$$

where f(Z, T) is a line. Let

$$A = K[X_1,\ldots,X_m,Y,Z,T]/(aY-F).$$

Then $A^{[1]} = k^{[m+3]}$. Further if $k[Z, T] \neq k[f(Z, T)]^{[1]}$ then $A \ncong k^{[m+2]}$. Thus, if f(Z, T) is a non-trivial line, then A gives rise to a counter-example to the Zariski Cancellation Problem.

Theorem (Ghosh—, 2023)

k: a field of positive characteristic,

$$\mathsf{A}(\mathsf{r}_1,\ldots,\mathsf{r}_m,\mathsf{f}):=\frac{\mathsf{k}[\mathsf{X}_1,\mathsf{X}_2,\ldots,\mathsf{X}_m,\mathsf{Y},\mathsf{Z},\mathsf{T}]}{(\mathsf{X}_1^{\mathsf{r}_1}\cdots\mathsf{X}_m^{\mathsf{r}_m}\mathsf{Y}-\mathsf{f}(\mathsf{Z},\mathsf{T}))},$$

where $\mathbf{r}_i > \mathbf{1}$ for each $i, 1 \le i \le m$ and f(Z, T) is any non-trivial line in k[Z, T]. Then:

Theorem (Ghosh—, 2023)

k: a field of positive characteristic,

$$\mathsf{A}(\mathsf{r}_1,\ldots,\mathsf{r}_m,\mathsf{f}):=\frac{\mathsf{k}[\mathsf{X}_1,\mathsf{X}_2,\ldots,\mathsf{X}_m,\mathsf{Y},\mathsf{Z},\mathsf{T}]}{(\mathsf{X}_1^{\mathsf{r}_1}\cdots\mathsf{X}_m^{\mathsf{r}_m}\mathsf{Y}-\mathsf{f}(\mathsf{Z},\mathsf{T}))},$$

where $\mathbf{r}_i > \mathbf{1}$ for each $i, 1 \le i \le m$ and f(Z, T) is any non-trivial line in k[Z, T]. Then:

• $A(r_1, \ldots, r_m, f) \cong A(s_1, \ldots, s_m, g)$ iff (r_1, \ldots, r_m) is equal to (s_1, \ldots, s_m) up to permutation and f and g are equivalent.

A B F A B F

Theorem (Ghosh—, 2023)

k: a field of positive characteristic,

$$\mathsf{A}(\mathsf{r}_1,\ldots,\mathsf{r}_m,\mathsf{f}):=\frac{\mathsf{k}[\mathsf{X}_1,\mathsf{X}_2,\ldots,\mathsf{X}_m,\mathsf{Y},\mathsf{Z},\mathsf{T}]}{(\mathsf{X}_1^{\mathsf{r}_1}\cdots\mathsf{X}_m^{\mathsf{r}_m}\mathsf{Y}-\mathsf{f}(\mathsf{Z},\mathsf{T}))},$$

where $\mathbf{r_i} > \mathbf{1}$ for each $i, 1 \le i \le m$ and f(Z, T) is any non-trivial line in k[Z, T]. Then:

• $A(r_1, \ldots, r_m, f) \cong A(s_1, \ldots, s_m, g)$ iff (r_1, \ldots, r_m) is equal to (s_1, \ldots, s_m) up to permutation and f and g are equivalent.

Thus, over a field k of positive characteristic, there is an infinite family of non-isomorphic rings which are stably isomorphic to $k^{[m+2]}$.

Generalised Epimorphism Theorems over Rings

An integral domain R with field of fractions K is said to be seminormal if for any $a \in K$ with $a^2, a^3 \in R$, implies $a \in R$.

• • = • • = •

Generalised Epimorphism Theorems over Rings

An integral domain R with field of fractions K is said to be seminormal if for any $a \in K$ with $a^2, a^3 \in R$, implies $a \in R$.

Ex: UFDs and normal domains are obviously seminormal.

 $R_1 = \mathbb{C}[X, Y]/(Y^2 - X^2 - X^3)$ is seminormal but not normal.

Generalised Epimorphism Theorems over Rings

An integral domain R with field of fractions K is said to be seminormal if for any $a \in K$ with $a^2, a^3 \in R$, implies $a \in R$.

Ex: UFDs and normal domains are obviously seminormal. $R_1 = \mathbb{C}[X, Y]/(Y^2 - X^2 - X^3)$ is seminormal but not normal.

The ring $R_2 = \mathbb{C}[X, Y]/(Y^2 - X^3)$ is not seminormal.
Generalised Epimorphism Theorems over Rings

An integral domain R with field of fractions K is said to be seminormal if for any $a \in K$ with $a^2, a^3 \in R$, implies $a \in R$. Ex: UFDs and normal domains are obviously seminormal. $R_1 = \mathbb{C}[X, Y]/(Y^2 - X^2 - X^3)$ is seminormal but not normal. The ring $R_2 = \mathbb{C}[X, Y]/(Y^2 - X^3)$ is not seminormal. Thm (Bhatwadekar (1988)): Let R be a Noetherian ring of

characteristic zero and $F \in R[X, Y]$. Then

$$\frac{R[X,Y]}{(F)} = R^{[1]} \implies R[X,Y] = R[F]^{[1]}$$

whenever R contains \mathbb{Q} or R is a seminormal domain.

Generalised Epimorphism Theorems over Rings

An integral domain R with field of fractions K is said to be seminormal if for any $a \in K$ with $a^2, a^3 \in R$, implies $a \in R$. Ex: UFDs and normal domains are obviously seminormal. $R_1 = \mathbb{C}[X, Y]/(Y^2 - X^2 - X^3)$ is seminormal but not normal. The ring $R_2 = \mathbb{C}[X, Y]/(Y^2 - X^3)$ is not seminormal. Thm (Bhatwadekar (1988)): Let R be a Noetherian ring of

characteristic zero and $F \in R[X, Y]$. Then

$$\frac{R[X,Y]}{(F)} = R^{[1]} \implies R[X,Y] = R[F]^{[1]}$$

whenever R contains \mathbb{Q} or R is a seminormal domain. Proved earlier for UFD by Russell-Sathaye (1979).

Generalised Epimorphism Theorems over Rings

An integral domain R with field of fractions K is said to be seminormal if for any $a \in K$ with $a^2, a^3 \in R$, implies $a \in R$. Ex: UFDs and normal domains are obviously seminormal. $R_1 = \mathbb{C}[X, Y]/(Y^2 - X^2 - X^3)$ is seminormal but not normal. The ring $R_2 = \mathbb{C}[X, Y]/(Y^2 - X^3)$ is not seminormal. Thm (Bhatwadekar (1988)): Let R be a Noetherian ring of

characteristic zero and $F \in R[X, Y]$. Then

$$\frac{R[X,Y]}{(F)} = R^{[1]} \implies R[X,Y] = R[F]^{[1]}$$

whenever R contains \mathbb{Q} or R is a seminormal domain.

Proved earlier for UFD by Russell-Sathaye (1979).

Ex: (Asanuma–Dutta (2021)): The hypotheses are necessary.

Theorem on Linear Planes over DVR

Thm (Bhatwadekar-Dutta (1994)):

Let (R, t) be a discrete valuation ring with field of fractions K := R[1/t] and residue field k := R/tR. If $G = aZ - b \in R[X, Y][Z]$ is s.t.

 $R[X, Y, Z]/(G) = R^{[2]},$

then there exists $X_0 \in R[X, Y]$ such that

- $K[X, Y] = K[X_0]^{[1]}$,
- $a \in R[X_0]$ and

• The image of X_0 in k[X, Y] lies outside k.

Further, $R[X, Y, Z] = R[G]^{[2]}$, if $t \nmid a$ or if $a = t^n$, $n \ge 0$.

Image: A (1) A (2) A

Theorem on Linear Planes over DVR

Thm (Bhatwadekar-Dutta (1994)):

Let (R, t) be a discrete valuation ring with field of fractions K := R[1/t] and residue field k := R/tR. If $G = aZ - b \in R[X, Y][Z]$ is s.t.

 $R[X, Y, Z]/(G) = R^{[2]},$

then there exists $X_0 \in R[X, Y]$ such that

- $K[X, Y] = K[X_0]^{[1]}$,
- $a \in R[X_0]$ and

• The image of X_0 in k[X, Y] lies outside k. Further, $R[X, Y, Z] = R[G]^{[2]}$, if $t \nmid a$ or if $a = t^n$, n > 0.

Ex (Bhatwadekar-Dutta (1994)): Let $R := \mathbb{C}[[t]]$ and $F = tX^2Z + X + t^2Y + tXY^2 \in R[X, Y, Z]$. Then $R[X, Y, Z]/(F) = R^{[2]}$.

Theorem on Linear Planes over DVR

Thm (Bhatwadekar-Dutta (1994)): Let (R, t) be a discrete valuation ring with field of fractions

K := R[1/t] and residue field k := R/tR. If $G = aZ - b \in R[X, Y][Z]$ is s.t.

 $R[X, Y, Z]/(G) = R^{[2]},$

then there exists $X_0 \in R[X, Y]$ such that

- $K[X, Y] = K[X_0]^{[1]}$,
- $a \in R[X_0]$ and

• The image of X_0 in k[X, Y] lies outside k. Further, $R[X, Y, Z] = R[G]^{[2]}$, if $t \nmid a$ or if $a = t^n$, n > 0.

Ex (Bhatwadekar-Dutta (1994)): Let $R := \mathbb{C}[[t]]$ and $F = tX^2Z + X + t^2Y + tXY^2 \in R[X, Y, Z]$. Then $R[X, Y, Z]/(F) = R^{[2]}$.

Is $R[X, Y, Z] = R[F]^{[2]}$? (OPEN)

Other Generalisations over Rings

Thm (Das-Dutta (2011)): Let R be a Noetherian domain and $F = aZ^n - b$, where $a, b \in R[X, Y]$. Then

 $\mathsf{R}[\mathsf{X},\mathsf{Y},\mathsf{Z}]/(\mathsf{F})=\mathsf{R}^{[2]}\implies\mathsf{R}[\mathsf{X},\mathsf{Y},\mathsf{Z}]=\mathsf{R}[\mathsf{F}]^{[2]},$

whenever R contains \mathbb{Q} and several other cases.

Thm (-2014): Let R be a Noetherian seminormal domain containing \mathbb{Q} and $F = X^r Y - F(X, Z, T) \in R[X, Y, Z, T]$ for $r \geq 2$. Then

 $\mathsf{R}[\mathsf{X},\mathsf{Y},\mathsf{Z},\mathsf{T}]/(\mathsf{F})=\mathsf{R}^{[3]}\implies \mathsf{R}[\mathsf{X},\mathsf{Y},\mathsf{Z},\mathsf{T}]=\mathsf{R}[\mathsf{F}]^{[3]}.$

Generalizations to higher dimensions by (Dutta, —(2015)), (Ghosh, —(2023)) and (Pal (2025)).

(4月) (3日) (3日) 日

 $R = \mathbb{C}[T], A = R[X, Y, Z] = \mathbb{C}[T, X, Y, Z],$ $F = TX^2Z + X + T^2Y + TXY^2 \in A,$ $B = R[F] = \mathbb{C}[T, F] \subset A.$

◆ 同 ▶ ◆ 国 ▶ ◆ 国 ▶ …

Э

$$R = \mathbb{C}[T], A = R[X, Y, Z] = \mathbb{C}[T, X, Y, Z],$$

$$F = TX^2Z + X + T^2Y + TXY^2 \in A,$$

$$B = R[F] = \mathbb{C}[T, F] \subset A.$$

Then

• A is an \mathbb{A}^2 -fibration over B,

$$R = \mathbb{C}[T], A = R[X, Y, Z] = \mathbb{C}[T, X, Y, Z],$$

$$F = TX^2Z + X + T^2Y + TXY^2 \in A,$$

$$B = R[F] = \mathbb{C}[T, F] \subset A.$$

Then

- A is an \mathbb{A}^2 -fibration over B,
- $A^{[1]} = B^{[3]}$ and

$$R = \mathbb{C}[T], A = R[X, Y, Z] = \mathbb{C}[T, X, Y, Z],$$

$$F = TX^2Z + X + T^2Y + TXY^2 \in A,$$

$$B = R[F] = \mathbb{C}[T, F] \subset A.$$

Then

- **A** is an \mathbb{A}^2 -fibration over *B*,
- $A^{[1]} = B^{[3]}$ and
- $A/(F) = R[X, Y, Z]/(F) = R^{[2]} = \mathbb{C}^{[3]}$.

Thus F is a linear hyperplane in $\mathbb{C}^{[4]}$.

$$R = \mathbb{C}[T], A = R[X, Y, Z] = \mathbb{C}[T, X, Y, Z],$$

$$F = TX^2Z + X + T^2Y + TXY^2 \in A,$$

$$B = R[F] = \mathbb{C}[T, F] \subset A.$$

Then

- **A** is an \mathbb{A}^2 -fibration over *B*,
- $A^{[1]} = B^{[3]}$ and
- $A/(F) = R[X, Y, Z]/(F) = R^{[2]} = \mathbb{C}^{[3]}$.

Thus F is a linear hyperplane in $\mathbb{C}^{[4]}$.

Q. Is $A = B^{[2]}(= \mathbb{C}[T, F]^{[2]})$?

$$R = \mathbb{C}[T], A = R[X, Y, Z] = \mathbb{C}[T, X, Y, Z],$$

$$F = TX^2Z + X + T^2Y + TXY^2 \in A,$$

$$B = R[F] = \mathbb{C}[T, F] \subset A.$$

Then

- **A** is an \mathbb{A}^2 -fibration over *B*,
- $A^{[1]} = B^{[3]}$ and
- $A/(F) = R[X, Y, Z]/(F) = R^{[2]} = \mathbb{C}^{[3]}$.

Thus *F* is a linear hyperplane in $\mathbb{C}^{[4]}$.

Q. Is $A = B^{[2]}(= \mathbb{C}[\mathsf{T}, \mathsf{F}]^{[2]})$? At least is $A = \mathbb{C}[\mathsf{F}]^{[3]}$?

$$R = \mathbb{C}[T], A = R[X, Y, Z] = \mathbb{C}[T, X, Y, Z],$$

$$F = TX^2Z + X + T^2Y + TXY^2 \in A,$$

$$B = R[F] = \mathbb{C}[T, F] \subset A.$$

Then

- **A** is an \mathbb{A}^2 -fibration over *B*,
- $A^{[1]} = B^{[3]}$ and
- $A/(F) = R[X, Y, Z]/(F) = R^{[2]} = \mathbb{C}^{[3]}$.

Thus *F* is a linear hyperplane in $\mathbb{C}^{[4]}$.

Q. Is $\mathbf{A} = \mathbf{B}^{[2]} (= \mathbb{C}[\mathbf{T}, \mathbf{F}]^{[2]})$? At least is $\mathbf{A} = \mathbb{C}[\mathbf{F}]^{[3]}$?

If NO, then it is a counter-example to the following problems:

$$R = \mathbb{C}[T], A = R[X, Y, Z] = \mathbb{C}[T, X, Y, Z],$$

$$F = TX^2Z + X + T^2Y + TXY^2 \in A,$$

$$B = R[F] = \mathbb{C}[T, F] \subset A.$$

Then

- **A** is an \mathbb{A}^2 -fibration over *B*,
- $\mathbf{A}^{[1]} = \mathbf{B}^{[3]}$ and
- $A/(F) = R[X, Y, Z]/(F) = R^{[2]} = \mathbb{C}^{[3]}$.

Thus *F* is a linear hyperplane in $\mathbb{C}^{[4]}$.

Q. Is $A = B^{[2]}(= \mathbb{C}[T, F]^{[2]})$? At least is $A = \mathbb{C}[F]^{[3]}$?

If NO, then it is a counter-example to the following problems:

- \mathbb{A}^2 -fibration Problem over $\mathbb{C}^{[2]}$;
- Cancellation Problem over $\mathbb{C}^{[1]}$;
- Epimorphism Problem for $\mathbb{C}^{[4]} \twoheadrightarrow \mathbb{C}^{[3]}$, $R^{[3]} \twoheadrightarrow R^{[2]}$.

A.K. Dutta, S.M. Bhatwadekar and Avinash Sathaye at Bhandarkar Oriental Research Institute, Pune

□▶▲厘▶▲厘▶

References

- H. Kraft *Challenging problems on affine n-space* Astérisque,
 237 (1996), Séminaire Bourbaki 802, 295–317.
- A. K. Dutta and N. Gupta, *The Epimorphism Theorem and its generalisations*, J. Algebra Appl. **14(9)** (2015), 15400101–30.
- N. Gupta, The Zariski Cancellation Problem and related problems in Affine Algebraic Geometry, Proc. Int. Cong. Math. 2022, Vol. 3, pp. 1578–1598.
- P. Ghosh and N. Gupta, *On the triviality of a family of linear hyperplanes*, Adv. Math. **428** (2023) 109166.
- P. Ghosh, N. Gupta and A. Pal, *On Embedding of linear hypersurfaces*, preprint.
- P. Ghosh, N. Gupta and A. Pal, On the family of affine threefolds a(x)y = F(x, z, t), preprint.