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Challenging Problems on Polynomial Rings

Polynomial rings present several challenging open problems —
easy to state (at least for mathematicians), difficult to solve.

1. Jacobian Conjecture (O.H. Keller).

2. Epimorphism Problem (Abhyankar-Sathaye).

3. An-Fibration Problem (Dolgachev-Weisfeiler).

4. Zariski Cancellation Problem.

5. Linearisation Problem (Kambayashi).

6. Characterisation Problem.

7. An-form Problem.
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Notation and Main Themes

Throughout my talk, k will denote a field of any characteristic
with algebraic closure k̄ .

For a ring R ,
A = R [n] denotes A = R[F1, . . . ,Fn] for some F1, . . . ,Fn ∈ A
which are algebraically independent over R i.e., A is a
polynomial ring in n indeterminates over R .

• To determine whether a polynomial F is a coordinate of
k[X1, . . . ,Xn], i.e., whether there exist F2, . . . ,Fn such that
k[X1, . . . ,Xn] = k[F ,F2, . . . ,Fn] = k[F ][n−1].

Of special interest: polynomials which are linear in one
variable.

• To examine whether A ∼= k[X1, . . . ,Xn] = k [n] for a given
ring A.

Of special interest: rings A which are quotients of polynomial
rings by linear polynomials.
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A Pioneer in Affine Algebraic Geometry

Shreeram S. Abhyankar (1930-2012)

Polynomials and power series,
May they forever rule the world
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Epimorphism Theorem (Abhyankar-Moh 1975)

k : field of characteristic 0.

Thm 1. (High-School Version)
Let u(T ), v(T ) be polynomials such that
T = g(u(T ), v(T )) for some polynomial g(X ,Y ).

Then either degTu | degTv or degTv | degTu.

Thm 1’. (Ring Theoretic Version)
Let ϕ : k[X ,Y ] → k[T ] be an epimorphism (surjection).

Let n = degTϕ(X ) ≥ 1, m = degTϕ(Y ) ≥ 1.

Then either m|n or n|m.

Thm 2 (Abhyankar-Moh, Suzuki). Let F ∈ k[X ,Y ]. Then

k[X ,Y ]/(F ) = k [1] ⇒ k[X ,Y ] = k[F ][1].
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Epimorphism Problem

Q.
k[X1, . . . ,Xn]

(F)
= k[n−1] =⇒ k[X1, . . . ,Xn] = k[F][n−1]?

n = 2: YES ch k = 0 (Abhyankar-Moh; Suzuki (1975))

n = 2: NO ch k > 0 (Segre 1957, Nagata (1972))

Ex (Segre (1957), Nagata (1971)):

Let g(Z ,T ) = Z pe + T + T sp ∈ k[Z ,T ],

where e, s ∈ N, pe ̸ | sp, sp ̸ | pe . Then

k[Z ,T ]/(g(Z ,T )) = k [1] but k[Z ,T ] ̸= k[g(Z ,T )][1].

Defn. We say g is a nontrivial line.

Abhyankar-Sathaye Conjecture: YES when ch k = 0.

Question on Epimorphism Problem can be asked even when
ch k ≥ 0 and F is of certain specified type.
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Theorem on Linear Planes

Thm (Sathaye, Russell (1976)): Let ch k ≥ 0 and

k[X ,Y ,Z ]

(G )
= k [2], where G = a(X ,Z )Y − b(X ,Z ).

Then k[X ,Y ,Z ] = k[G ][2] and there exists X1 ∈ k[X ,Z ] s.t.

a(X ,Z ) = a1(X1), k[X ,Z ] = k[X1]
[1] and k[X ,Y ,Z ] = k[X1,G ][1].

In particular, if A = k [2], then for any linear plane F in A[Y ],
coordinates X ,Z of A can be so chosen, such that

F = a(X )Y + b(X ,Z ).

Q. Let
k[X ,Y ,Z ,T ]

(G )
= k [3] where G = a(X )Y − b(X ,Z ,T ).

Is k[X ,Y ,Z ,T ] = k[X ,G ][2]?

YES for a(X ) = X r where r > 1 (— (2014)).
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A.K. Dutta, A. Sathaye and N. Gupta
at the Asiatic Society, Kolkata
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A few other cases

Thm: k field of characteristic p ≥ 0 and F = aY n − b, where
a, b ∈ k[X ,Z ] and p ∤ n. Then

k[X,Y,Z]/(F) = k[2] =⇒ k[X,Y,Z] = k[F][2],

k alg. closed (Wright (1978)); any k (Das–Dutta (2011)).

Thm (Russell-Sathaye (1979)): k field of characteristic zero
and F = anY

n + an−1Y
n−1 + · · ·+ a1Y + a0 ∈ k[X ,Y ,Z ],

where a0, . . . , an ∈ k[X ,Z ] s.t. gcd(a1, . . . , an) /∈ k . Then

k[X,Y,Z]/(F) = k[2] =⇒ k[X,Y,Z] = k[F][2].

Thm (Kaliman (2002)): Suppose that G ∈ C[X ,Y ,Z ] s.t.

C[X,Y,Z]

(G− λ)
= C[2] for almost all λ ∈ C.

Then C[X,Y,Z] = C[G][2].
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Generalisation of Sathaye-Russell Linear Planes

k : any field,
B := k[X1, . . . ,Xm,Y ,Z ,T ],
H := α(X1, . . . ,Xm)Y − F (X1, . . . ,Xm,Z ,T ) and
A := B/H .

Q. (i) Under what condition(s) A = k [m+2]?

(ii) Does A = k [m+2] =⇒ B = k[H][m+2]?

(iii) Does A = k [m+2] =⇒ B = k[X1, . . . ,Xm,H][2]?

For m = 1, k = C, Kaliman-Vénéreau-Zaidenberg (2003)
obtained initial results.

For m ≥ 1 and general k , affirmative answers under certain
assumptions on α and F are given in recent papers with
Parnashree Ghosh and Ananya Pal.
Example: (i) Ch k = 0 and F ∈ k[Z ,T ].
(ii) Ch k ≥ 0, α = a1(X1)a2(X2) · · · am(Xm) and F ∈ k[Z ,T ].
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Parnashree Ghosh at the 80th birthday conference in the
honour of H. Kraft, Monte-Verita
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Ananya Pal at St. Petersburg, Russia
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Thm (Ghosh, —, Pal)

k any field, F = a(X)Y − b(X,Z,T) ∈ k[X,Y,Z,W], a ̸= 0,

B := k[X,Y,Z,T]/(F)

and x : image of X in A. Suppose a(X ) has no simple root in
k . Then the following statements are equivalent:

B = k [3].

B = k[x ][2].

k[X ,Y ,Z ,W ] = k[F ][3].

k[X ,Y ,Z ,W ] = k[X ,F ][2].

∀ root λ of a(X ), k(λ)[Z ,T ] = k(λ)[b(λ,Z ,T )][1].

Eg: The following polynomials do not define affine 3-spaces

• G1 = X 2(X + 1)2Y − (Z 2 + T 3)− X ∈ k1[X ,Y ,Z ,T ].

• G2 = (X p − λp)Y − (Z 2 + T 3) + X ∈ k2[X ,Y ,Z ,T ],

where ch. k2 = p > 0, λp ∈ k2 \ kp
2 .
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Thm (Ghosh — Pal)

k : field of characteristic zero,
B := k[X1, . . . ,Xm,Y ,Z ,T ],
H := α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ), s.t.
f ̸= 0 and every prime divisor of α divides h and

A :=
k[X1, . . . ,Xm,Y ,Z ,T ]

(α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ))
.

Suppose A[l ] = k [l+m+2] for some l ⩾ 0
and that k[Z ,T ]/(f ) is a regular ring. Then

k[Z ,T ] = k[f ][1]

and
B = k[X1, . . . ,Xm,H][2].
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Why linear polynomials?

Breakthroughs on central problems in AAG involved varieties
defined by “linear” polynomials of the form F = aY − b,
where a ∈ k[X ] and b ∈ k[X ,Z ,T ].

• Solution of Linearization Problem for C∗-actions on C3

involved questions like:

Q. Is the Russell-cubic A =
C[X ,Y ,Z ,T ]

(X 2Y + X + Z 2 + T 3)
= C[3]?

Thm (Makar-Limanov (1996)): NO .

• I could give negative solution to ZCP in +ve ch. for 3-space
by proving that the “Asanuma threefold”

A =
k[X,Y,Z,T]

(XrY + Zp2 + T+ Tsp)
= k[3], ch. k = p, p ∤ s ; r , s > 1.

The threefold was earlier involved in questions on the Affine
Fibration Problem and the Linearisation Problem in +ve ch.
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Affine Fibration Problem

Let R be a ring, P a prime ideal of R and A an R-algebra.
Notation:
k(P) : the field of fractions of the integral domain R/P .

A⊗R k(P): the fibre ring of A at P .

Aim: To extract information about the R-algebra A from data
on its fibre rings A⊗R k(P).

Definition: A is called An-fibration over R if A is flat and
finitely generated over R satisfying

A⊗R k(P) = k(P)[n] ∀ prime ideals P of R .

Question (Dolgachev and Weisfeiler (1974)):
Let R be a regular local ring of dim d and A an An-fibration
over R . Is A = R [n]?
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Affine Fibration Problem: Some Theorems

Q (Dolgachev and Weisfeiler (1974)):
Let R be a regular local ring of dim d and A an An-fib over R ,
i.e., A is flat and finitely generated over R satisfying

A⊗R k(P) = k(P)[n] ∀ prime ideals P of R . (*)

Is A = R [n]?

n = 1, d ≥ 1: YES (Kambayashi-Miyanishi (1978))
* holds ∀ P of ht ≤ 1 (Dutta (1995))

n = 2, d = 1: YES if Q ⊆ R (Sathaye (1983))
NO if Q ⊈ R (Asanuma (1987))

n = 2, d = 2: OPEN if Q ⊆ R .

n = 2, d ≥ 2: NO if Q ⊈ R (Asanuma (1987), — (2014))

Thm (Asanuma (1987)): Let R be a regular local ring and
A an An-fib over R . Then A[ℓ] = R [n+ℓ] for some ℓ.
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Asanuma’s Example (1987)

Ex: Let k be a field of characteristic p > 0 and

A =
k[X,Y,Z,T]

(XrY + Zp2 + T+ Tsp)
, p ∤ s , s ≥ 2, r ≥ 1.

Thm (Asanuma (1987)):
Let x denote the image of X in A. Then

A is an A2-fibration over k[x ].

A[1] ∼=k[x] k[x]
[3] = k[4] but

A ≇k[x] k[x]
[2].

Thus A is a nontrivial A2-fibration over the PID k[x ].

Q (Asanuma (1994)): Is A ∼=k k[3]?

If YES then Linearisation Prob has −ve soln for k [3] in +ve ch.
If NO then ZCP has −ve soln for k [3] in +ve ch.

P. Russell called this dichotomy: Asanuma’s Dilemma.
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A stalwart in Affine Algebraic Geometry

T. Asanuma at Ramakrishna Mission Institute of Culture,
KolkataNeena Gupta ISI, Kolkata Polynomial Rings and Coordinates



Asanuma’s Example (1987)

Ex: Let k be a field of characteristic p > 0 and

A =
k[X,Y,Z,T]

(XrY + Zp2 + T+ Tsp)
, p ∤ s , r ≥ 1, s ≥ 2

Thm (Asanuma (1987)):
Let x denote the image of X in A. Then

A is an A2-fibration over k[x ].
A[1] ∼=k[x] k[x]

[3] = k[4] but
A ≇k[x] k[x]

[2].
Thus A is a nontrivial A2-fibration over the PID k[x ].

Q (Asanuma (1994)): Is A ∼=k k[3]?
If YES then Linearisation Prob has −ve soln for k [3] in +ve ch.
If NO then ZCP has −ve soln for k [3] in +ve ch.

P. Russell called this dichotomy: Asanuma’s Dilemma.

Thm (— 2014): A ≇ k[3] for r ≥ 2.
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A Founder of modern Algebraic Geometry

Oscar Zariski (1899-1986)
Brought rigour in classical algebraic geometry, laid the
foundation of modern algebraic Geometry with A. Weil,

connected it with commutative algebra
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Zariski Cancellation Problem

Zariski Cancellation Problem: Is An
k cancellative as an

affine variety? i.e., for an affine variety V,

V× A1
k
∼= An+1

k =⇒ V ∼= An
k?

More generally, is k [n](= k[X1, . . . ,Xn]) cancellative? i.e.,

A[W] ∼=k k[X1, . . . ,Xn+1] =⇒ A ∼=k k[X1, . . . ,Xn]?
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More generally, is k [n](= k[X1, . . . ,Xn]) cancellative? i.e.,

A[W] ∼=k k[X1, . . . ,Xn+1] =⇒ A ∼=k k[X1, . . . ,Xn]?

n = 1: YES (Abhyankar-Eakin-Heinzer (1972))

n = 2: YES ch k = 0 (Fujita (1979), Miyanishi-Sugie (1980))

YES k perfect (Russell (1981))
YES ch k ≥ 0, k any field (Bhatwadekar— (2015))

Research on ZCP for n = 2 had led to:
• Topological characterisation of C2 (C.P. Ramanujam (1971))
• Algebraic characterisation of k2 (M. Miyanishi (1975))
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A pioneer on the Characterisation Problem

C.P. Ramanujam (1938-1974)
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Four Stalwarts of Affine Algebraic Geometry

M. Koras, P. Russell, M. Miyanishi and R.V. Gurjar
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Zariski Cancellation Problem

ZCP. Is k [n] (= k[X1, . . . ,Xn]) cancellative?

n = 1: YES (Abhyankar-Eakin-Heinzer (1972))

n = 2: YES ch k = 0 (Fujita (1979), Miyanishi-Sugie (1980))

YES k perfect (Russell (1981))
YES ch k ≥ 0, k any field (Bhatwadekar— (2015))

n ≥ 3: NO ch k > 0 (— 2014)

n ≥ 3: OPEN ch k = 0

n = 3: Asanuma threefold provides counterexample.

Research on ZCP opened up its connection with important
problems and concepts in Affine Algebraic Geometry like
Embedding Problem and Affine Fibration Problem.
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Exponential Map

An Exponential map on a ring B is a ring homomorphism

ϕU : B → B[U] satisfying

(i) ε◦ϕU = 1B , where

ε : B[U] → B is the evaluation at U = 0.

B
ϕU−→ B[U]

U→0−→ B

(ii) ϕV ◦ϕU = ϕV+U .

B
ϕU−→ B[U]

ϕV−→ B[U ,V ]

Bϕ := {a ∈ B |ϕ(a) = a} ⊆ B .
is a ring and is known as ring of ϕ invariants.

Ex: Let ϕU : k[X ] → k[X ,U] be a k-alg homo defined by
ϕU(X ) = X + U . Then ϕ is an exponential map on k[X ].
k[X ]ϕ = k .
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Locally Nilpotent Derivation (LND)

Let B be an integral domain containing Q. A linear map
D : B → B is called a Locally nilpotent derivation on B if
• D(xy) = xD(y) + yD(x) ∀ x , y ∈ B .
• For each x ∈ B , ∃ n ≥ 1 s.t. Dn(x) = 0.

KerD := {a ∈ B | D(a) = 0} ⊆ B

is a subring of B and is known as Kernel of the Derivation D.

LND: generalisation of “partial derivative”.

Slice Theorem. (Gabriel-Nouazé (1967))
Let D be an LND on B and A = Ker(D).
If ∃ b ∈ B s.t. D(b) = 1 (such a b is called Slice of the LND),
then B = A[b] = A[1].

Corollary. A ⊆ B . Then TFAE:
(I) B = A[1].
(II) ∃ D ∈ LND(B) s.t. 1 ∈ D(B).
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LND and Exponential Map

Let Q ⊆ B . Any exponential map ϕU : B → B[U] mapping

b 7−→ b + b1U + b2U
2 + . . .

induces an LND D : B → B defined by

D(b) = b1.

Then bn = Dn(b)/n!.

Conversely any LND D on B gives rise
to an exponential map ϕU :=

∑
n≥0

Un

n!
Dn on B .

b ∈ Ker(D) ⇐⇒ ϕU(b) = b, i.e., b ∈ BϕU .

Thus if B is a ring containing Q,

Exp map on B ⇐⇒ LND of B .

Ring of invariants ⇐⇒ Ker of D.
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Some invariants

B : k-algebra
Expk(B): set of all k-linear exponential maps on B
LNDk(B): set of all locally nilpotent k-derivations.

Makar-Limanov invariant ML(B) :=
⋂

ϕ∈Expk (B)

Bϕ.

Derksen invariant DK(B) = k[Bϕ | ϕ ∈ Expk(B) \ {0}]

If Q ⊆ k ⊆ B , then

ML(B) =
⋂

D∈LNDk (B)

Ker(D).

DK(B) = k[Ker(D) | D ∈ LNDk(B) \ {0}].
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Modified Invariants

Let B be a k-algebra and
LND∗(B) := {D ∈ LNDk(B)|D has a slice}

The modified Derksen invariant, DK∗(B) of B is

DK∗(B) = k[Ker(D)|D ∈ LND∗
k(B)]

and the modified Makar-Limanov invariant, ML∗(B) of B is

ML∗(B) =
⋂

D∈LND∗(B)

Ker(D).

Lemma: (i) DK∗(k [n]) = DK(k [n]) = k [n] if n > 1.
(ii) ML(k [n]) = ML∗(k [n]) = k for n ≥ 1

Pf: Let B = k[X1, . . . ,Xn] and ϕi : B → B[U] be k-algebra
homo defined by ϕi(Xj) = Xj + δijU , where 1 ≤ i ≤ n.
Then Bϕi := k[X1, . . . ,Xi−1,Xi+1, . . . ,Xn]. Hence
DK(B) = B . Further as k ⊆ ML(B) ⊆ ∩1≤i≤nB

ϕi = k , we
have ML∗(k [n]) = k .
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Characterisation Problem: dim ≤ 2

Some characterisations of A1
C

The only smooth contractible affine curve is A1
C.

The only one-dim affine UFD with trivial units is C[1].

Topological characterisation of A2
C (C. P. Ramanujam (1971)):

The only smooth contractible affine surface which is
simply connected at infinity is A2

C.
In particular, any smooth contractible affine surface
homeo to R4 is A2

C.

Algebraic characterisation of A2
C (Miyanishi (1975)):

The only two-dim factorial affine C-domain A with trivial
units s.t. Spec(A) contains a cylinder-like open set is C[2].

Application (Fujita-Miyanishi-Sugie): A2
C is cancellative.

Gurjar (2002) gave a proof extending Ramanujam’s ideas.
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New Algebraic Characterisations of A2 and A3

Algebraic characterisation of A2
k (Dasgupta — (2019))

Let B be an affine k-domain of dim 2. TFAE:
(i) B = k [2].
(ii) ML∗(B) = k .
(iii)ML(B) = k and ML∗(B) ̸= B .

Remark: Thm does not hold when dim B = 3.

Algebraic characterisation of A3
k (Dasgupta — (2019))

k alg closed field and B an affine UFD of dim 3. TFAE:
(i) B = k [3].
(ii) ML∗(B) = k .
(iii) ML(B) = k and ML∗(B) ̸= B .

Remark: Thm does not hold when dim B = 4.
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An-forms

k a field of characteristic p ≥ 0 with algebraic closure k̄ .
A k-algebra A is called an An-form over k if

A⊗k k̄ = k̄ [n].

Defn: An An-form A over k is said to be trivial if A = k [n].

If k is not a perfect field, then An-forms need not be trivial.

Example of a non-trivial A1-form:
Suppose k ̸= kp and β ∈ k \ kp.
Let α ∈ k̄ be such that β = αp, and

A =
k[X ,Y ]

(Y p − X − βX p)
.

Then, A⊗k k̄ = k̄ [1] but A ̸= k [1].
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Affine forms over fields of char. zero

Question: Is any An-form A over k necessarily trivial?

n = 1: YES (Classical).

n = 2: YES (T. Kambayasi (1975)).

n ≥ 3: OPEN

Partial Affirmative Answers when n = 3 and:

(i) A admits a fixed point free locally nilpotent derivations
(Daigle–Kaliman (2009)).

(ii) A contains an element f which is a coordinate in A⊗k k̄
(Daigle–Kaliman (2009)).

(iii) A admits an effective action of a reductive algebraic
k-group of positive dimension (Koras-Russell (2013)).

(iv) A admits a non-confluent action of a unipotent group of
dimension two (Gurjar–Masuda–Miyanishi).
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Theorem (Dutta- — -Lahiri (2020)): A3-forms

k : field of characteristic zero
k̄ : algebraic closure of k
A: an affine k-domain
Suppose

A⊗k k̄ = k̄ [3],

and there exists a locally nilpotent derivation D on A
satisfying rk (D ⊗ 1k̄) ≤ 2. Then

A = k [3].
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r-divisible
For r = (r1, . . . , rm) ∈ Zm

>0, α(̸= 0) ∈ k [m] is called r-divisible
if . . . .
For m = 1, α ∈ k[X1] is (r1)-divisible if

α = X r1
1 α1(X1) = X r1

1 (X1β1 + α1(0)), α2 := α1(0)) ∈ k∗

For m = 2, α ∈ k[X1,X2] is (r1, r2)-divisible in the system of
coordinates X1,X2 if

α = X r1
1 α1(X1,X2) = X r1

1 (X1β1 + X r2
2 (X2β2 + α3)), α3 ∈ k∗

α = X1X
2
2 (X1 + X 2

2 )
2 is (2, 3)-divisible in X2,X1 and is

(1, 6)-divisible in X1,X2.

For m = 3, α ∈ k[X1,X2,X3] is (r1, r2, r3)-divisible in the
system of coordinates X1,X2,X3 if

α = X r1
1 (X1β1 + X r2

2 (X2β2 + X r3
3 (X3β3 + α4))), α4 ∈ k∗
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Prop (Ghosh — Pal)

k : infinite field of any characteristic,
B := k[X1, . . . ,Xm,Y ,Z ,T ],
r := (r1, . . . , rm) ∈ Zm

>1,
H := α(X1, . . . ,Xm)Y − f (Z ,T )− X1β(X1, . . . ,Xm,Z ,T ),
such that f ̸= 0 and α is r-divisible in {X1, . . . ,Xm}.

Let

A :=
k[X1, . . . ,Xm,Y ,Z ,T ]

(α(X1, . . . ,Xm)Y − f (Z ,T )− X1β(X1, . . . ,Xm,Z ,T ))
.

Suppose either ML(A) = k or DK(A) = A. Then there exist
Z1,T1 of k[Z ,T ] and a0, a1 ∈ k [1] such that

k[Z ,T ] = k[Z1,T1]

and
f (Z ,T ) = a0(Z1) + a1(Z1)T1.
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Examples

I. Let

H := X 2(1 + X )2Y + Z 2 + T 3 + Xa(X ,Z ,T )

X 2(1 + X )2 is (2)-divisible in {X} and f (Z ,T ) = Z 2 + T 3

which cannot be a linear polynomial.

Thus A = k[X ,Y ,Z ,T ]/(H) is NOT a polynomial ring, even
if A is a ‘nice’ ring.

II. Let

H := X1X
2
2 (X1 + X 2

2 )
2Y + Z 2 + T 3 − X2β(X1,X2,Z ,T )

X1X
2
2 (X1 + X 2

2 )
2 is (2, 3)-divisible in {X2,X1} and

f (Z ,T ) = Z 2 + T 3 which cannot be a linear polynomial.

Thus A = k[X1,X2,Y ,Z ,T ]/(H) is NOT a polynomial ring
even if A is a ‘nice’ ring.
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Thm (Ghosh — Pal)

k : field of any characteristic,
B := k[X1, . . . ,Xm,Y ,Z ,T ],
r := (r1, . . . , rm) ∈ Zm

>1,
H := α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ), such
that f ̸= 0 and every prime divisor of α divides h.

Let

A :=
k[X1, . . . ,Xm,Y ,Z ,T ]

(α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ))
.

Suppose α is r-divisible in the system of coordinates
{X1 − λ1, . . . ,Xm − λm}, for some λi ∈ k s.t.
k1 := k(λ1, . . . , λm) is separable over k .

Let x1, . . . , xm be the images of X1, . . . ,Xm in A respectively
and E := k[x1, . . . , xm].
Then the following statements are equivalent:
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k[X1, . . . ,Xm,Y ,Z ,T ] = k[X1, . . . ,Xm,H][2].

k[X1, . . . ,Xm,Y ,Z ,T ] = k[H][m+2].

A = k[x1, . . . , xm]
[2].

A = k [m+2].

k[Z ,T ] = k[f (Z ,T )][1].

A[l ] = k [l+m+2] for some l ⩾ 0 and ML(A) = k .

f (Z ,T ) is a line in k[Z ,T ] and ML(A) = k .

A is an A2-fibration over E and ML(A) = k .

A⊗k k̄ is a UFD, ML(A) = k and
(

k1[Z ,T ]
(f (Z ,T ))

)∗
= k̄∗.

A[l ] = k [l+m+2] for some l ⩾ 0 and DK(A) = A.

f (Z ,T ) is a line in k[Z ,T ] and DK(A) = A.
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The family of hypersurfaces given by

(X r1+1
1 + X r1

1 X r2+1
2 + · · ·+ X r1

1 . . .X
rm−1

m−1X
rm+1
m )Y − f (Z ,T ),

for ri ⩾ 2, 1 ⩽ i ⩽ m and

a1(X1) · · · am(Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ),

where every prime divisor of a1(X1) · · · am(Xm) in
k[X1, . . . ,Xm] divides h, and every ai(Xi) has a separable
multiple root λi over k are included in the family of
hypersurfaces mentioned in this Theorem.

This gives a unified treatment of several apparently
different-looking questions which have been of long interest to
mathematicians (including Cancellation, Epimorphism and

Fibration problems).
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Consequences of the Theorem

k : a field of ANY characteristic, ri > 1, for 1 ≤ i ≤ m, m ≥ 1.

A := K [X1, . . . ,Xm,Y ,Z ,T ]/(aY − F ),

where a = π1
s1 . . . πn

sn ∈ k[X1, . . . ,Xm] is r-divisible where
r := (r1, . . . , rm), πi ’s primes,
F := f (Z ,T ) + (π1 · · · πn)g(X1, . . . ,Xm,Z ,T ), H = aY − F .

A = k [m+2] if and only if k[Z ,T ] = k[f (Z ,T )][1].

Provides a general framework for understanding the
non-triviality of Russell-Koras threefold x2y + x + z2 + t3 = 0
and the generalised Asanuma varieties.

If A = k [m+2], then
k[X1, . . . ,Xm,Y ,Z ,T ] = k[X1, . . . ,Xm,H][2].

Proves a partial case of the Abhyankar-Sathaye Conjecture.
Extends partially Sathaye-Russell theorem to the case n > 3.
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[2].

A is a non-trivial A2-fibration over k[x1, . . . , xm] if and
only if f (Z ,T ) is a non-trivial line.
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Thm (— 2014)

Let R be a ring, π1, π2, . . . , πn ∈ R , π := π1π2 · · · πn and
G (Z ,T ) ∈ R[Z ,T ] be such that

R[Z ,T ]/(π,G (Z ,T )) ∼= (R/π)[1].

Let

D := R[Z ,T ,Y ]/(π1
s1π2

s2 · · · πn
snY − G (Z ,T ))

for any set of positive integers s1, . . . , sn. Then

D [1] = R [3].
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Thm (Ghosh – Pal)

Let k be a field,

a = π1
s1 . . . πn

sn ∈ k[X1, . . . ,Xm]

be an r-divisible polynomial where r := (r1, . . . , rm), ri > 1 and

F = f (Z ,T ) + (π1 · · · πm)g(X1, . . . ,Xm,Z ,T ),

where f (Z ,T ) is a line. Let

A = K [X1, . . . ,Xm,Y ,Z ,T ]/(aY − F ).

Then A[1] = k [m+3].

Further if k[Z ,T ] ̸= k[f (Z ,T )][1] then A ≇ k [m+2].

Thus, if f (Z ,T ) is a non-trivial line, then A gives rise to a
counter-example to the Zariski Cancellation Problem.
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Theorem (Ghosh—, 2023)

k : a field of positive characteristic,

A(r1, . . . , rm, f) :=
k[X1,X2, . . . ,Xm,Y,Z,T]

(Xr1
1 · · ·Xrm

mY − f(Z,T))
,

where ri > 1 for each i , 1 ≤ i ≤ m and f (Z ,T ) is any
non-trivial line in k[Z ,T ].
Then:

A(r1, . . . , rm, f ) ∼= A(s1, . . . , sm, g) iff (r1, . . . , rm) is equal
to (s1, . . . , sm) up to permutation and f and g are
equivalent.

Thus, over a field k of positive characteristic, there is an
infinite family of non-isomorphic rings which are stably
isomorphic to k [m+2].
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Generalised Epimorphism Theorems over Rings

An integral domain R with field of fractions K is said to be
seminormal if for any a ∈ K with a2, a3 ∈ R , implies a ∈ R .

Ex: UFDs and normal domains are obviously seminormal.
R1 = C[X ,Y ]/(Y 2 − X 2 − X 3) is seminormal but not normal.

The ring R2 = C[X ,Y ]/(Y 2 − X 3) is not seminormal.

Thm (Bhatwadekar (1988)): Let R be a Noetherian ring of
characteristic zero and F ∈ R[X ,Y ]. Then

R[X ,Y ]

(F )
= R [1] =⇒ R[X ,Y ] = R[F ][1]

whenever R contains Q or R is a seminormal domain.

Proved earlier for UFD by Russell-Sathaye (1979).

Ex: (Asanuma–Dutta (2021)): The hypotheses are necessary.
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Theorem on Linear Planes over DVR

Thm (Bhatwadekar-Dutta (1994)):
Let (R , t) be a discrete valuation ring with field of fractions
K := R[1/t] and residue field k := R/tR . If
G = aZ − b ∈ R[X ,Y ][Z ] is s.t.

R[X ,Y ,Z ]/(G ) = R [2],

then there exists X0 ∈ R[X ,Y ] such that

K [X ,Y ] = K [X0]
[1],

a ∈ R[X0] and
The image of X0 in k[X ,Y ] lies outside k .

Further, R[X ,Y ,Z ] = R[G ][2], if t ∤ a or if a = tn, n ≥ 0.

Ex (Bhatwadekar-Dutta (1994)): Let R := C[[t]] and
F = tX 2Z + X + t2Y + tXY 2 ∈ R[X ,Y ,Z ].
Then R[X ,Y ,Z ]/(F ) = R [2].

Is R[X ,Y ,Z ] = R[F ][2]? (OPEN)
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Other Generalisations over Rings

Thm (Das-Dutta (2011)): Let R be a Noetherian domain and
F = aZ n − b, where a, b ∈ R[X ,Y ]. Then

R[X,Y,Z]/(F) = R[2] =⇒ R[X,Y,Z] = R[F][2],

whenever R contains Q and several other cases.

Thm (—2014): Let R be a Noetherian seminormal domain
containing Q and F = X rY − F (X ,Z ,T ) ∈ R[X ,Y ,Z ,T ] for
r ≥ 2. Then

R[X,Y,Z,T]/(F) = R[3] =⇒ R[X,Y,Z,T] = R[F][3].

Generalizations to higher dimensions by (Dutta, —(2015)),
(Ghosh, —(2023)) and (Pal (2025)).
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An Example of Bhatwadekar-Dutta (1993)

R = C[T ], A = R[X ,Y ,Z ] = C[T ,X ,Y ,Z ],
F = TX 2Z + X + T 2Y + TXY 2 ∈ A,
B = R[F ] = C[T ,F ] ⊂ A.

Then

A is an A2-fibration over B ,

A[1] = B[3] and

A/(F) = R[X,Y,Z]/(F) = R[2] = C[3].

Thus F is a linear hyperplane in C[4].

Q. Is A = B[2](= C[T,F][2])? At least is A = C[F][3]?
If NO, then it is a counter-example to the following problems:

A2-fibration Problem over C[2];

Cancellation Problem over C[1];

Epimorphism Problem for C[4] ↠ C[3], R [3] ↠ R [2].
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