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Injectivity relative to closed submodules

Definition

Assume that R is a commutative ring with identity, and M is a unitary
R-module. A submodule K of M is called closed in M if K has no proper
essential extension in M.

Let X and M be R-modules.

Definition

▷ X is called M-c-injective if, for every closed submodule K of M, every
R-homomorphism φ : K → X can be extended to M.

▷ X is called c-injective if X is M-c-injective for every R-module M.

▷ X is called self-c-injective if X is X -c-injective.
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Injectivity relative to closed submodules

Some facts related to c-injective modules

Theorem (C. Santa-Clara and P.F. Smith, 2004)

Let D be a Dedekind domain. Then every direct product of simple
D-modules is self-c-injective.

Theorem (E. Mermut, C. Santa-Clara, and P.F. Smith, 2009)

Let D be a Noetherian domain and P a maximal ideal of D. Then the
following statements are equivalent.

1 The module D/P is c-injective.

2 The module D/P is M-c-injective, where M = D ⊕ D.

3 P is an invertible ideal.

Corollary (E. Mermut, C. Santa-Clara, and P.F. Smith, 2009)

A Noetherian integral domain D is Dedekind iff every simple D-module is
c-injective.
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Injectivity relative to closed submodules over Krull domains

Preliminaries

Assume that R is a commutative ring with the total quotient ring T .

Definition

A nonzero finitely generated ideal J of R is called a Glaz–Vasconcelos
ideal, denoted by J ∈ GV (R), if the natural homomorphism
ϕ : R → HomR(J,R) is an isomorphism.

Assume that M is an R-module.

Definition

The complete GV -torsion submodule of M is defined as

torGV (R)(M) = {x ∈ M | Jx = 0 for some J ∈ GV (R)}.

If torGV (R)(M) = M, then M is called a GV-torsion module.
If torGV (R)(M) = 0, then M is called a GV-torsion-free module.
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The w -envelope of modules

Assume that M is a GV-torsion-free R-module.

Definition

The w -envelope of M is the set given by

Mw = {x ∈ E (M) | Jx ⊆ M for some J ∈ GV (R)},

where E (M) is the injective hull of M.

Definition

A GV-torsion-free module M is called a w -module if

Ext1R(R/J,M) = 0

for any J ∈ GV (R). Equivalently, M is w -module iff Mw = M.
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Injectivity relative to closed submodules over Krull domains

Strong Mori domains

Definition

An integral domain D is called strong Mori if the ascending chain
condition holds on w -ideals of D.

Theorem (F. Wang and R.L. McCasland, 1999)

An integral domain D is strong Mori iff DP is Noetherian for every
maximal w -ideal P of D and each nonzero element of D lies in only
finitely many maximal w -ideals.
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Injectivity relative to closed submodules over Krull domains

Krull domains

Definition

An integral domain D is called a Krull domain if it satisfies the following
three conditions:

(1) For every prime ideal P of D of height one, DP is a discrete valuation
ring.

(2) D =
⋂

DP , where P ranges over all prime ideals of D of height one.

(3) Any nonzero element of D lies in only a finite number of prime ideals
of height one.
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Injectivity relative to closed submodules over Krull domains

Theorem (F. Wang and R.L. McCasland, 1999)

The following statements are equivalent for an integral domain D.

1 D is a Krull domain.

2 D is an integrally closed strong Mori domain.

3 D is a strong Mori domain and DP is a DVR for each maximal
w -ideal P of D.

4 D is a strong Mori domain and every maximal w -ideal of D is
w -invertible.

5 Each nonzero ideal of D is w -invertible.
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Injectivity relative to closed submodules over Krull domains

Main Results

Theorem

Assume that D is a strong Mori domain and P is a maximal w -ideal of D.
Then the following statements are equivalent.

1 The module (D/P)w is c-injective.

2 The module (D/P)w is M-c-injective, where M = D ⊕ D.

3 P is w -invertible.

Corollary

▷ Assume that D is a strong Mori domain. Then D is a Krull domain iff
every w -simple D-module is c-injective.

▷ Assume that D is a Krull domain. Then every direct product of
torsion-free w -simple w -modules is self-c-injective.

Haleh Hamdi (University of Lisbon) July 21, 2025 12 / 21



Injectivity relative to closed submodules over Krull domains

Main Results

Theorem

Assume that D is a strong Mori domain and P is a maximal w -ideal of D.
Then the following statements are equivalent.

1 The module (D/P)w is c-injective.

2 The module (D/P)w is M-c-injective, where M = D ⊕ D.

3 P is w -invertible.

Corollary

▷ Assume that D is a strong Mori domain. Then D is a Krull domain iff
every w -simple D-module is c-injective.

▷ Assume that D is a Krull domain. Then every direct product of
torsion-free w -simple w -modules is self-c-injective.

Haleh Hamdi (University of Lisbon) July 21, 2025 12 / 21



Injectivity relative to closed submodules over Krull domains

Main Results

Theorem

Assume that D is a strong Mori domain and P is a maximal w -ideal of D.
Then the following statements are equivalent.

1 The module (D/P)w is c-injective.

2 The module (D/P)w is M-c-injective, where M = D ⊕ D.

3 P is w -invertible.

Corollary

▷ Assume that D is a strong Mori domain. Then D is a Krull domain iff
every w -simple D-module is c-injective.

▷ Assume that D is a Krull domain. Then every direct product of
torsion-free w -simple w -modules is self-c-injective.

Haleh Hamdi (University of Lisbon) July 21, 2025 12 / 21



w -Injectivity relative to closed submodules

w -Injectivity relative to closed submodules

Haleh Hamdi (University of Lisbon) July 21, 2025 13 / 21



w -Injectivity relative to closed submodules

Definition

Assume that R is a commutative ring. A sequence

A → B → C

of R-modules and R-homomorphisms is called w -exact if the sequence

AP → BP → CP

is exact for any maximal w -ideal P of R.

▷ A sequence B
f−→ C → 0 is w -exact iff Coker(f ) is GV-torsion.
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w -Injectivity relative to closed submodules

Definition

Assume that M is an R-module. Set

L(M) := (M/torGV (M))w .

An R-module M is said to be w -injective if

0 → HomR(C , L(M)) → HomR(B, L(M)) → HomR(A, L(M)) → 0

is w -exact for any w -exact sequence

0 → A → B → C → 0.
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w -Injectivity relative to closed submodules

Theorem (H. Kim and F. Wang, 2014)

A w -module M is w -injective if

0 → HomR(C ,M) → HomR(B,M) → HomR(A,M) → 0

is w -exact for any exact sequence

0 → A → B → C → 0

of R-modules.

Corollary (H. Kim and F. Wang, 2014)

Any GV-torsion-free injective module is a w -injective w -module.
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w -Injectivity relative to closed submodules

c-w -Injectivity

Definition

We define a w -module E to be c-w -injective if for every closed submodule
K of every torsion-free R-module M,

0 → HomR(M/K ,E ) → HomR(M,E ) → HomR(K ,E ) → 0

is w -exact.

Clearly, any c-injective torsion-free w -module is c-w -injective.
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w -Injectivity relative to closed submodules

Main results

Theorem

Let D be an integral domain and X a w -module. Then the following
statements are equivalent.

1 For every closed ideal I of D, the sequence

0 → HomD(D/I ,X ) → HomD(D,X ) → HomD(I ,X ) → 0

is exact.

2 X is c-injective.

3 X is c-w -injective.
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w -Injectivity relative to closed submodules

Theorem

Let D be an integral domain and X a GV-torsion-free D-module. If X is a
c-w -injective w -module, then cX = X for any c ∈ D with cD closed in D.

Theorem

Let D be a Krull domain. If X is a GV-torsion-free w -module such that
cX = X for any c ∈ D with cD closed in D, then X is c-injective.
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Thank you for your attention!
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