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affine semigroup rings

Affine Semigroup (intrinsic definition)

An affine semigroup is a finitely generated commutative monoid S that
satisfies the following intrinsic properties: for any s, s1, s2 ∈ S ,

(cancellative) if s + s1 = s + s2, then s1 = s2;

(torsion free) if ns1 = ns2 in S for some positive integer n, then
s1 = s2.

Affine Semigroup (characterization)

A finitely generated commutative monoid is an affine semigroup if and
only if it can be embedded in Zd (equivalently in Qd) for some positive
integer d .

Affine Semigroup Ring

Let κ be a field. With respect to an embedding of S into some Zd , an
element of S is realized as a d-tuple (i1, . . . , id) of integers. The affine
semigroup ring R := κ[uS ] is the subring of the Laurent polynomial ring
κ[u,u−1] in the variables u generated by ui11 · · · u

id
d , where (i1, . . . , id) ∈ S .
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affine semigroup rings

Examples.

〈(2, 0), (1, 1), (0, 2)〉 ⊂ Z2 〈(1, 0), (1, 1), (1, 2)〉 ⊂ Z2

The affine semigroup rings κ[u2
1 , u1u2, u

2
2 ] and κ[v1, v1v2, v1v

2
2 ] can be

identified via u1 = v
1/2
1 and u2 = v

1/2
1 v2.
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affine semigroup algebras

If S is an affine sub-semigroup of another affine semigroup S ′, we
may consider them as sub-semigroups of some Zd .

S ⊂ S ′ ⊂ Zd

We say that S shares the embedding of S ′.

The semigroup ring R ′ := κ[uS
′
] is an algebra over the coefficient ring

R := κ[uS ]. We use R ′/R to denote the affine semigroup algebra R ′

over R.

Given a numerical semigroup ring κ[[uS ]], there arise two numerical
semigroup algebras κ[[u]]/κ[[uS ]] and κ[[uS ]]/κ[[us ]], where 0 6= s ∈ S .

Algebraic properties of κ[[uS ]] are properties of the flat numerical
semigroup algebra κ[[uS ]]/κ[[us ]].
Arithemetic properties of κ[[uS ]] are properties of the coefficient ring of
the equi-gcd numerical semigroup algebra κ[[u]]/κ[[uS ]].
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edge algebras

Let G be a finite simple graph with vertices t1, . . . , tn.

An edge of G connecting ti and tj is denoted by ti tj ∈ κ[t1, . . . , tn].

The edge ring κ[EG ] of G is the subring of κ[t1, . . . , tn] generated as
a κ-algebra by the edges of G .

The edge rings of the graphs

t3

t1

t2

t2 t1

t4

t3

t1 t2

t4 t3

are κ[t1t2, t2t3, t3t1], κ[t1t2, t1t3, t1t4] and κ[t1t2, t2t3, t3t4].

An edge ring is an affine semigroup ring together with the embedding
given by its vertices.

We may also consider edge algebras.
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toric ideals

Toric ideal

Let G be a finite simple graph. We consider the polynomial ring P(G )
over a field κ, whose variables correspond to edges of G . Let

e : P(G )→ κ[EG ]

be the homomorphism of κ-algebras sending each variable to its
corresponding edge. The kernel of e is called the toric ideal of G and is
denote by IG .

Splitting

A toric ideal IG is splittable if there exist subgraphs G1 and G2 of G such
that IG = IG1 + IG2 and IG 6= IG1 for i = 1, 2.

I-Chiau Huang (Academia Sinica) Edge Algebras and their Fibered Sums 7 / 16



toric ideals

Toric ideal

Let G be a finite simple graph. We consider the polynomial ring P(G )
over a field κ, whose variables correspond to edges of G . Let

e : P(G )→ κ[EG ]

be the homomorphism of κ-algebras sending each variable to its
corresponding edge. The kernel of e is called the toric ideal of G and is
denote by IG .

Splitting

A toric ideal IG is splittable if there exist subgraphs G1 and G2 of G such
that IG = IG1 + IG2 and IG 6= IG1 for i = 1, 2.

I-Chiau Huang (Academia Sinica) Edge Algebras and their Fibered Sums 7 / 16



gluing

Gluing

Let T1 and T2 be numerical semigroups.
Let a ∈ T1 and b ∈ T2 be relatively prime numbers such that

a (resp. b) is not a minimal generator of T1 (resp. T2).

The numerical semigroup bT1 + aT2 is called a gluing of T1 and T2.

Gluing is a fibered sum in the category of numerical semigroups.

bT1
// bT1 + aT2

abN

OO

// aT2

OO

Gluing can be generalized to affine semigroups as a special case of
fibered sum.

S1
// S1 tS S2

S

OO

// S2

OO
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gluing

In the category of finite simple graphs, fibered sum exists.

G1
// G1 tG G2 κ[EG1 ] // κ[EG1tGG2 ]

G

OO

// G2

OO

κ[EG ]

OO

// κ[EG2 ]

OO

In the category of commutative rings, fibered sum exists.

κ[EG1 ] // κ[EG1 ]⊗κ[EG ] κ[EG2 ]

κ[EG ]

OO

// κ[EG2 ]

OO

In the category of affine semigroup rings, fibered sum exists.

κ[EG1 ] // κ[EG1 ]⊗̃κ[EG ]κ[EG2 ]

κ[EG ]

OO

// κ[EG2 ]

OO
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gluing

κ[EG1tGG2 ]

κ[EG1 ]⊗̃κ[EG ]κ[EG2 ]
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κ[EG1 ] //

00
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]
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// P(G2)
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e
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gluing

κ[EG1tGG2 ]

κ[EG1 ]⊗̃κ[EG ]κ[EG2 ]

κ[EG1 ]
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P(G )
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gluing

P(G1 tG G2)

e

((
π̃
��

π

uu
κ[EG1 ]⊗κ[EG ] κ[EG2 ] // κ[EG1 ]⊗̃κ[EG ]κ[EG2 ] // κ[EG1tGG2 ]

Proposition

Let G → G1 and G → G2 be inclusions of finite simple graphs. Then
IG1tGG2 = IG1 + IG2 if and only if the canonical surjection

κ[EG1 ]⊗κ[EG ] κ[EG2 ]→ κ[EG1tGG2 ]

obtained by the universal property of the tensor product is an isomorphism.
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gluing

P(G1 tG G2)

e

((
π̃
��

π

uu
κ[EG1 ]⊗κ[EG ] κ[EG2 ] // κ[EG1 ]⊗̃κ[EG ]κ[EG2 ] // κ[EG1tGG2 ]

Theorem

Let G1 and G2 be subgraphs of a finite simple graph such that
G := G1 ∩ G2 is a K2. Then κ[EG1 ]⊗κ[EG ] κ[EG2 ] is torsion free.
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gluing

P(G1 tG G2)

e

((
π̃
��

π

uu
κ[EG1 ]⊗κ[EG ] κ[EG2 ] // κ[EG1 ]⊗̃κ[EG ]κ[EG2 ] // κ[EG1tGG2 ]

Proposition

Let G1 and G2 be subgraphs of a finite simple graph such that
G := G1 ∩ G2 ' K2. The canonical map

κ[EG1 ]⊗̃κ[EG ]κ[EG2 ]→ κ[EG1tGG2 ]

is an isomorphism if and only if G1 or G2 is bipartite.
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