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A Brief History of Gorenstein homological Algebra
• 1969: Auslander and Bridger develop the theory of stable module

categories and introduce G-dimensiona.

• 1993: Gorenstein flat modules are introduced by Enochs, Jenda, and
Torrecillasb.

• 1995: Enochs and Jenda define Gorenstein projective (and injective)
modulesc.

• 2011: Mahdou and Tamekkante introduced (strongly) Gorenstein
(semi)hereditary ringsd.

• 2000s–present: Rapid development of Gorenstein homological
dimensions, Gorenstein categories, and their applications.

aAuslander, M.; Bridger, M.: Stable module theory, Mem. Am. Math. Soc. 94, 146 p. (1969).
bEnochs, Edgar E.; Jenda, Overtoun M. G.; Torrecillas, B.: Gorenstein flat modules, J. Nanjing

Univ., Math. Biq. 10, No. 1, 1-9 (1993).
cEnochs, Edgar E.; Jenda, Overtoun M. G.: Gorenstein injective and projective modules,

Math. Z. 220, No. 4, 611-633 (1995).
dMahdou, N.; Tamekkante, M.: On (strongly) Gorenstein (semi)hereditary rings, Arab. J. Sci.

Eng. 36, No. 3, 431-440 (2011).
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[Holm’s thesis] Every result in classical homological algebra has a
counterpart in Gorenstein homological algebra.

Multiplicative Ideal Theory Gorenstein MIT

Dedekind Domain Gorenstein Dedekind Domain
Krull Domain Gorenstein Krull Domain
Property P Gorenstein Property P

Table: Comparison

1 (WK) F. Wang and H. Kim, Foundations of Commutative Rings and Their
Modules, 2nd ed., Springer, 2024.

2 (KMX) H. Kim, N. Mahdou, and S. Xing, Gorenstein Homological Algebra,
in preparration.

3 (ZKH) D. Zhou, H. Kim, K. Hu, Homological characterizations of G-Krull
domains and G-Dedekind domains, submitted.

4 (CHKQW) M. Chen, K. Hu, H. Kim, X. Qu, F. Wang, A group action on
Gorenstein projective modules and its application, submitted.
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Definition (Gorenstein projective module)
Let R be a ring. An R-module M is called Gorenstein projective (G-projective
for short) if there exists an exact complex of projective R-modules

P = · · · → P1 → P0 → P−1 → P−2 → · · ·

such that M = ker(P0 → P−1) and such that HomR(P,Q) is exact for every
projective R-module Q.
The complex P is called a complete projective resolution of M.

Definition (Gorenstein projective dimension)
Let R be a ring and M an R-module. The Gorenstein projective dimension of
M, denoted by G-pdR(M), is defined as the least non-negative integer n such
that there exists an exact sequence

0 → Gn → Gn−1 → · · · → G0 → M → 0

where each Gi is a Gorenstein projective R-module. If no such finite n exists,
we say that G-pdR(M) = ∞.
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Definition (Gorenstein injective module)
Let R be a ring. An R-module M is said to be Gorenstein injective (G-injective
for short) if there exists an exact complex of injective R-modules

I = · · · → I1 → I0 → I−1 → I−2 → · · ·

such that M = ker(I0 → I−1) and such that HomR(E , I) is exact for every
injective R-module E .
The complex I is called a complete injective resolution of M.

Definition (Gorenstein injective dimension)
Let R be a ring and M an R-module. The Gorenstein injective dimension of
M, denoted by G-idR(M), is defined as the least non-negative integer n such
that there exists an exact sequence

0 → M → G0 → G1 → · · · → Gn → 0

where each Gi is a Gorenstein injective R-module. If no such finite n exists,
we say that G-idR(M) = ∞.
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Definition (Gorenstein global dimension)
The global Gorenstein dimension of a ring R, denoted by G-gl.dim(R), is
defined as

G-gl.dim(R) := sup{G-pdR(M) | M is an R-module}
= sup{G-idR(M) | M is an R-module}.

Definition (Gorenstein flat modules)
Let R be a ring. An R-module M is called Gorenstein flat (G-flat for short) if
there exists an exact complex of flat R-modules

F = · · · → F1 → F0 → F−1 → F−2 → · · ·

such that M = ker(F0 → F−1) and for every injective right R-module I, the
complex I ⊗R F is exact.
The complex F is called a complete flat resolution of M.
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Definition (Gorenstein hereditary rings and Gorenstein Dedekind
domain)
a A ring R is called Gorenstein hereditary (G-hereditary for short) if every
submodule of a projective module is Gorenstein projective (i.e.,
G-gl.dim(R) ≤ 1). If R is a G-hereditary domain, it is called Gorenstein
Dedekind (G-Dedekind for short).

aMahdou, N., Tamekkante, M.: On (strongly) Gorenstein (semi)hereditary rings. Arab J. Sci.
Eng. 36, 431–440 (2011).

Theorem
The following are equivalent for a ring R.

1 R is a G-hereditary ring.

2 Every factor module of a G-injective module is G-injective.
3 Every factor module of an injective module is G-injective.
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Definition
1 Let R be an integral domain with quotient field K . For I ∈ F(R), define

I−1 := {x ∈ K | xI ⊆ R} and Iv := (I−1)−1. Then the map v from F(R) to
F(R), given by A 7→ Av for any A ∈ F(R), is a star operation, which is
called the v -operation on R.

2 An ideal I of R is called a v -ideal (or divisorial ideal) if I = Iv .
3 A domain R is called a divisorial domain if every nonzero ideal of R is a

divisorial.
4 A ring R is called Gorenstein semihereditary (G-semihereditary for short)

if it is coherent and every submodule of a flat R-module is G-flat.
An integral domain R is said to be Gorenstein Prüfer (G-Prüfer) if R is
G-semihereditary.

5 A ring R is a QF(quasi-Frobenius) ring if R is self-injective Noetherian,
equivalently G-gl.dim(R) = 0.

6 A Noetherian domain is said to be a 1-Gorenstein domain if its
self-injective dimension is at most 1.
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G-semihereditary.

5 A ring R is a QF(quasi-Frobenius) ring if R is self-injective Noetherian,
equivalently G-gl.dim(R) = 0.

6 A Noetherian domain is said to be a 1-Gorenstein domain if its
self-injective dimension is at most 1.

Hwankoo Kim Gorenstein Dedekind Domains July 23, 2025 9 / 29



Theorem
The following statements are equivalent for an integral domain R:

1 R is a G-Dedekind domain.

2 Every submodule of a projective R-module is G-projective.
3 Every ideal of R is G-projective.
4 Every prime ideal of R is G-projective
5 R is a Noetherian divisorial domain.
6 R is a Noetherian G-Prüfer domain.
7 R/(u) is a QF-ring for any nonzero nonunit u ∈ R.
8 R is a 1-Gorenstein domain.
9 R is Noetherian and RP is G-Dedekind for every P ∈ Max(R).

Corollary
If R is a G-Dedekind domain, then dim(R) ≤ 1.

Theorem
A domain is Dedekind if and only if it is integrally closed G-Dedekind.
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Theorem (Hu, Wang, Xu, Zhao)
Let R be a one-dimensional Noetherian domain with quotient field K and
integral closure R. Then R is a G-Dedekind domain if and only if every prime
ideal P of R containing (R :K R) is G-projective.

Lemma (Hu and Wang)

Let R be a domain with gl. dim(R) = n < ∞, and let u ∈ R be a nonzero
nonunit. Then

G-gldim(R/uR) ≤ n − 1.

Example (Hu, Wang, Xu, Zhao)
Let D = Q[y , z], where y and z are two indeterminates, and let Q denote the
field of rational numbers. Then the ring

R = Q[X 3,X 4] ∼= D/(y4 − z3)

is a G-Dedekind domain. To verify this, observe that gl. dim(D) = 2 and R is
not a QF-ring. Then, by applying the above lemma, the result follows.
However, the ring Q+ X 3Q[X ] is an overring of R that is not G-Dedekind.
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Definition
1 Denote by Fn the class of R-modules with flat dimension at most a fixed

nonnegative integer n.

2 An R-module M is called n-copure projective if Ext1R(M,N) = 0 for every
R-module N ∈ Fn.
A 0-copure projective module is simply called copure projective.
The module M is said to be strongly copure projective if Exti+1

R (M,F ) = 0
for every flat R-module F and all i ≥ 0.

3 An R-module M is called copure injective if Ext1R(E ,M) = 0 for every
injective R-module E .

4 A ring R is called a CPH ring if every submodule of a copure projective
module is copure projective.

5 A module M over a domain R is said to be divisible if rM = M for every
nonzero r ∈ R.

6 A module is said to be h-divisible if it is an epimorphic image of an
injective module.
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Theorem
a The following statements are equivalent for a Noetherian domain R:

1 R is a CPH domain.

2 Every prime ideal of R is copure projective.
3 Every finitely generated copure projective module is reflexive.

aXiong, Rings of copure projective dimension one, J. Korean Math. Soc. 54, No. 2, 427-440
(2017).

Theorem (Xiong)
The following statements are equivalent for a integral domain R:

1 R is a G-Dedekind domain.

2 R is a CPH domain.
3 R is a Noetherian ring and for any maximal ideal m of R, Rm is a CPH

ring.
4 Every ideal of R is strongly copure projective.
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Theorem (Xiong)
a The following statements are equivalent for a integral domain R:

1 R is a G-Dedekind domain.

2 Every divisible module is copure injective.
3 Every h-divisible module is copure injective.
4 Every divisible module is G-injective.
5 Every h-divisible module is G-injective.

aT. Xiong, A characterization of Gorenstein Dedekind domains, Int. Electron. J. Algebra 22,
97-102 (2017).

Let R be a commutative ring. Define

IPD(R) := sup{pdR(M) | M is an injective R-module}.

Theorem (Hu, Lim, Zhou)
a An integral domain R is a G-Dedekind domain if and only if IPD(R) ≤ 1.

aHu, Kui; Lim, Jung Wook; Zhou, De Chuan, Flat dimensions of injective modules over
domains, Bull. Korean Math. Soc. 57, No. 4, 1075-1081 (2020).
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Definition (w-theory)
1 A nonzero ideal J of R is called a Glaz-Vasconcelos ideal ( GV-ideal) if J

is finitely generated and the natural homomorphism φ : R → HomR(J,R)
is an isomorphism.

2 Let M be an R-module. Then M is called GV-torsion-free if Jx = 0 with
J ∈ GV(R) and x ∈ M implies x = 0, and M is called GV-torsion if for any
x ∈ M, there exists J ∈ GV(R) with Jx = 0.

3 For a GV-torsion-free R-module M, set

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV(R)},

where E(M) is the injective hull of M. Then Mw is called the w-envelope
of M.

4 A GV-torsion-free R-module M is called a w-module over R if
Ext1

R(R/J,M) = 0 for any J ∈ GV(R), equivalently, if M = Mw .
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Definition
1 An ideal I of R is called a w-ideal (or semidivisorial ideal) if I = Iw .

2 A nonzero ideal p of R is said to be a prime w-ideal if p is both a prime
ideal and a w-ideal; a maximal w-ideal if p is maximal in the set of all
proper w-ideals of R.

3 Let F(R) denote the set of nonzero fractional ideals of R. Then the map
w from F(R) to F(R), given by A 7→ Aw for any A ∈ F(R), is a star
operation, which is called the w-operation on R.

4 Note that the w-operation is of finite character and stable.
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Definition (w-locally G-projective)
An R-module M is called w-locally G-projective if Mm is G-projective for any
maximal w-ideal m of R.

Definition
1 A Noetherian ring R is said to be Gorenstein if idRm

Rm < ∞ for any
maximal ideal m of R.

2 a A domain R is called a G-Krull domain if R satisfies the following three
conditions:

(i) For each prime ideal p of R of height one, Rp is a Gorenstein ring.
(ii) R =

⋂
Rp, where p ranges over all prime ideals of R of height one.

(iii) Any nonzero element of R lies in only a finite number of prime ideals of
height one

aQiao, L., Wang, F.G.: A half-centered star-operation on an integral domain. J. Korean Math.
Soc. 54(1), 35–57 (2017).
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Lemma
a Let S be a multiplicative subset of R, M be an R-module, and N be an
RS-module. Then the natural RS-homomorphism

θ : HomR(M,N) → HomRS (MS,N)

is an isomorphism.
aWang, F.G., Kim, H.: Two generalizations of projective modules and their applications. J. Pure

Appl. Algebra 219, 2099–2123 (2015).

Lemma
Let S be a multiplicative subset of R, M be an R-module, and N be an
RS-module. Then the natural RS-homomorphism

θ : Ext1
R(M,N) → ExtRS (MS,N)

is an isomorphism.
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• A domain R is called strong Mori (for short, SM) if R satisfies the ascending
chain condition on w-ideals of R.

Lemma (Characterization of SM domains)
A domain R is an SM domain if and only if Rm is a Noetherian domain for any
maximal w-ideal m of R, and each nonzero element of R lies in only finitely
many maximal w-ideals of R.
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Theorem (Characterizations of G-Krull domains)
aThe following statements are equivalent for a domain R.

1 R is an SM domain and idRRm ≤ 1 for any maximal w-ideal m of R.

2 R is an SM domain and idRm
Rm ≤ 1 for any maximal w-ideal m of R.

3 R is an SM domain and every w-ideal of R is w-locally G-projective.
4 R is an SM domain and every prime w-ideal of R is w-locally

G-projective.
5 Rm is a G-Dedekind domain for any maximal w-ideal m of R, and each

nonzero element of R lies in only finitely many maximal w-ideals of R.
6 R is a G-Krull domain.

a(ZKH)
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1 A domain R is said to be t-almost Dedekind if Rm is a discrete valuation
ring for each maximal t-ideal (or w-ideal) m of R.

2 Note that a domain R is a Krull domain if and only if R is a t-almost
Dedekind domain and R is an SM domain.

Example (w-locally G-Dedekind domain but not of w-finite
character)
Let R be a non-Krull t-almost Dedekind domaina. Then, for any maximal
w-ideal m of R, Rm is a discrete valuation ring, thus a G-Dedekind domain.
However, R does not satisfy that each nonzero element of R lies in only
finitely many maximal w-ideals of R. If not, we would get that R is an SM
domain by Lemma 3. Thus, R would be a Krull domain, a contradiction.

aKang, B.G.: Prüfer v -multiplication domains and the ring R[X ]Nv . J. Algebra 123, 151–170
(1989).
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aKang, B.G.: Prüfer v -multiplication domains and the ring R[X ]Nv . J. Algebra 123, 151–170
(1989).

Hwankoo Kim Gorenstein Dedekind Domains July 23, 2025 21 / 29



Lemma
a Let (R,m) be a local Noetherian domain, p a prime ideal of R with p ⊊ m,
and M a finitely generated R-module. If Exti+1

R (R/Q,M) = 0 for any prime
ideal Q properly containing p, then Exti

R(R/p,M) = 0.
aKaplansky, I.: Commutative Rings. Allyn and Bacon, Boston, Mass (1970).

Theorem
Let (R,m) be a local Noetherian domain. If m is a G-projective R-module,
then R is a G-Dedekind domain.
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Corollary
If R is a Noetherian domain and every maximal ideal of R is G-projective, then
R is G-Dedekind.

Theorem (Characterization of G-Krull domains)
The following statements are equivalent for a domain R.

1 R is a G-Krull domain.
2 R is an SM domain and every maximal w-ideal of R is w-locally

G-projective.

Definition
A GV-torsion-free R-module M is called a strong w-module if Exti

R(N,M) = 0
for each i ≥ 1 and any GV-torsion R-module N.

Lemma
If idRR ≤ 1, then R is a strong w-module.

Hwankoo Kim Gorenstein Dedekind Domains July 23, 2025 23 / 29



Corollary
If R is a Noetherian domain and every maximal ideal of R is G-projective, then
R is G-Dedekind.

Theorem (Characterization of G-Krull domains)
The following statements are equivalent for a domain R.

1 R is a G-Krull domain.
2 R is an SM domain and every maximal w-ideal of R is w-locally

G-projective.

Definition
A GV-torsion-free R-module M is called a strong w-module if Exti

R(N,M) = 0
for each i ≥ 1 and any GV-torsion R-module N.

Lemma
If idRR ≤ 1, then R is a strong w-module.

Hwankoo Kim Gorenstein Dedekind Domains July 23, 2025 23 / 29



Corollary
If R is a Noetherian domain and every maximal ideal of R is G-projective, then
R is G-Dedekind.

Theorem (Characterization of G-Krull domains)
The following statements are equivalent for a domain R.

1 R is a G-Krull domain.
2 R is an SM domain and every maximal w-ideal of R is w-locally

G-projective.

Definition
A GV-torsion-free R-module M is called a strong w-module if Exti

R(N,M) = 0
for each i ≥ 1 and any GV-torsion R-module N.

Lemma
If idRR ≤ 1, then R is a strong w-module.

Hwankoo Kim Gorenstein Dedekind Domains July 23, 2025 23 / 29



Corollary
If R is a Noetherian domain and every maximal ideal of R is G-projective, then
R is G-Dedekind.

Theorem (Characterization of G-Krull domains)
The following statements are equivalent for a domain R.

1 R is a G-Krull domain.
2 R is an SM domain and every maximal w-ideal of R is w-locally

G-projective.

Definition
A GV-torsion-free R-module M is called a strong w-module if Exti

R(N,M) = 0
for each i ≥ 1 and any GV-torsion R-module N.

Lemma
If idRR ≤ 1, then R is a strong w-module.

Hwankoo Kim Gorenstein Dedekind Domains July 23, 2025 23 / 29



Theorem (Characterizations of G-Dedekind domains)
TFAE for a domain R with quotient field K .

1 R is an SM domain and idRR ≤ 1.

2 R is a Noetherian domain and idRR ≤ 1.
3 R is an SM domain and Ext1

R(M,R) = 0 for any submodule M of a free
module.

4 R is an SM domain, K/R is a w-module, and Ext1
R(M,R) = 0 for any

finite type submodule M of a free module.
5 R is an SM domain, K/R is a w-module, and Ext1

R(I,R) = 0 for any
w-ideal I of R.

6 R is an SM domain and Ext1
R(I,R) = 0 for any ideal I of R.

7 R is an SM domain and any nonzero ideal I of R is a v-ideal.
8 R is a G-Dedekind domain.
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Question. The authors raised the question of whether every SG-Dedekind
domain is necessarily a Dedekind domain. a

a(HKWXZ) K. Hu, H. Kim, F. G. Wang, L. Y. Xu, and D. C. Zhou, On strongly Gorenstein
hereditary rings, Bull. Korean Math. Soc. 56(2) (2019), 373–382.

Definition (strongly Gorenstein Dedekind domains)

1 An R-module M is called strongly Gorenstein projective (or
SG-projective, for short) if and only if there exists a short exact sequence

0 −→ M −→ P −→ M −→ 0,

where P is a projective R-module, and HomR(−,Q) leaves the sequence
exact for every projective R-module Q.
Let SG denote the class of SG-projective R-modules.

2 A domain R is called an SG-Dedekind domain if every submodule of any
projective R-module is SG-projective.
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Definition (Dimension related to SG)
Let n be a non-negative integer and let M be an R-module.

1 We say that M has projective dimension with respect to SG (or
SG-projective dimension) at most n, denoted by pdSGM ≤ n, if there
exists a projective resolution

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

d0 // M // 0

such that Im(dn) ∈ SG. If no such n exists, we define pdSGM = ∞. If such
an n exists and is minimal, we set pdSGM = n.

2 The global dimension with respect to SG of R, denoted by glSG dim(R), is
defined as the supremum of the SG-projective dimensions of all
R-modules:

glSG dim(R) = sup{pdSGM | M is an R-module}.
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Theorem (Characterizations of SG-Deekind domains)
a Let R be a domain. Then the following conditions are equivalent:

1 R is an SG-Dedekind domain.

2 glSG dim(R) ≤ 1.
3 Every ideal I of R is SG-projective.

a(CHKQW)

Example

1 Let p be a prime number, and let R := Z+ pZi. Then R is not a Dedekind
domain. However, it is shown in [HKWXZ, Example 3.4] that every ideal
of R is SG-projective.

2 Let p be a prime number, R := Z+ pZi, and let S := RP , where
P = (p, pi). It is shown in [HKWXZ, Example 3.5] that every ideal of S is
SG-projective.
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Open Questions
1 In an integral domain, the notions of an ideal being projective and being

invertible are equivalent. Is there an invertibility property that is
equivalent to being G-projective or SG-projective?

2 Dedekind domains are characterized by the fact that every nonzero ideal
can be expressed as a product of prime ideals. Can G-Dedekind
domains or SG-Dedekind domains be characterized in a similar way?

3 a Investigate if and how integral closure behaves differently for
G-Dedekind domains compared to classical Dedekind domains.

aA. Geroldinger, H. Kim, A. Loper, On Long-Term Problems in Multiplicative Ideal Theory and
Factorization Theory, to appear in Contemporary Mathematics Series of AMS
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The End
Thank you for your attention.

Questions or Comments?
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