Modules whose endomorphism rings are reduced

Philly Ivan Kimuli

Kyambogo University (pkimuli@kyu.ac.ug)

July 15, 2025

Overview

1 Introduction to endo-reduced modules

- 2 Properties of endo-reduced modules
- 3 On \mathcal{K} -nonsingular modules
- Over a commutative Dedekind domain

5 Bibliography

Introduction to endo-reduced modules

- *R* is a ring with unity, *M* is a unitary right *R*-module, and
 - $S = \operatorname{End}_R(M)$ denote the endomorphism ring of M.
- *R* is **reduced** if it has no nonzero nilpotent elements.
- *M_R* is reduced if for each *m* ∈ *M* and *a* ∈ *R*, *ma*² = 0 implies *mRa* = 0 (Lee & Zhou, 2004).
- *M_R* is **endo-reduced module** if *S* is a reduced ring.

Examples of endo-reduced modules

- Modules whose endomorphism rings are subdirect products of domains.
- Modules whose endomorphism rings are Abelian (von Neumann) regular

•
$$\mathbb{Q}_{\mathbb{Z}}, \mathbb{Z}_{p}, \mathbb{Z}_{\mathbb{Z}}, \mathbb{Z}_{p^{\infty}}, \mathbb{Q}/\mathbb{Z} = \bigoplus_{p \in \mathcal{P}} \mathbb{Z}_{p^{\infty}}$$

Properties of endo-reduced modules

- $_{S}M$ is a reduced module $\Rightarrow M_{R}$ is an endo-reduced module
- M_R is an endo-reduced module $\Leftrightarrow M_R$ is a reduced module
- \mathbb{Z}_n is a reduced module over \mathbb{Z} iff *n* is square-free
- $\mathbb{Z}_{p^{\infty}}$ is endo-reduced but not reduced as S-module nor as a \mathbb{Z} -module
- A direct summand of an endo-reduced module is endo-reduced.
- A direct sum of endo-reduced modules is not endo-reduced.

• If $M = \bigoplus_{\alpha \in \mathcal{J}} M_{\alpha}$ is endo-reduced, then $\operatorname{Hom}(M_{\alpha}, M_{\beta}) = 0$ for all $\alpha \neq \beta \in \mathcal{J}$, Abelian, and Dedekind finite.

Properties of endo-reduced modules

Theorem

 $M = \bigoplus_{\alpha \in \mathcal{J}} M_{\alpha}$ is endo-reduced if and only if M_{α} is endo-reduced for each $\alpha \in \mathcal{J}$ and $Hom(M_{\alpha}, M_{\beta}) = 0$ for all $\alpha \neq \beta \in \mathcal{J}$.

Since
$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_{p^{\infty}}, Z_{q^{\infty}}) = 0$$
 for every $p \neq q$, we have

$$M_{\mathbb{Z}}=\mathbb{Q}/\mathbb{Z}=igoplus_{m{p}\in\mathcal{P}}\mathbb{Z}_{m{p}^{\infty}}$$
 endo-reduced

Corollary

If $\bigoplus_{\alpha \in \mathcal{J} \neq \emptyset} N_{\alpha}$ is endo-reduced with $N_{\alpha} = N$, then $|\mathcal{J}| = 1$

• The \mathbb{Z} -module $\mathbb{Z}[x] (\cong \mathbb{Z}^{(\mathbb{N})})$ is not endo-reduced

• Simple modules $\{N_{\alpha}, \alpha \in \mathcal{J}\}$ (pairs-wise nonisomorphic), $\bigoplus_{\alpha \in \mathcal{J}} N_{\alpha}$ and $\prod_{\alpha \in \mathcal{J}} N_{\alpha}$ are endo-reduced

\mathcal{K} -nonsingular modules

- *M* is **nonsingular** if $\forall m \in M, mI = 0$ for $I \leq_r R \Rightarrow m = 0$;
- *M* is \mathcal{K} -nonsingular if, $\forall \lambda \in \operatorname{End}(M)$, ker $(\lambda) \leq M$ implies $\lambda = 0$.
- A reduced ring is both left and right nonsingular, but this property need not hold for its modules.
- The \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ is endo-reduced but not \mathcal{K} -nonsingular.

Theorem (Johnson and Wong, 1961)

If M is uniform and nonsingular, then $End_R(M)$ is a domain. If, in addition, M is quasi-injective, then $End_R(M)$ is a division ring.

Example

• The \mathbb{Z} -module \mathbb{Z}_p is uniform, endo-reduced and \mathcal{K} -nonsingular but not nonsingular.

On *K*-nonsingular modules

• For the broader class of uniform and \mathcal{K} -nonsingular modules, we have:

Theorem

If M is both uniform and \mathcal{K} -nonsingular, then M is an endo-reduced module. In particular, the following statements hold:

- (1) every nonzero endomorphism of M is a monomorphism,
- (2) $End_R(M)$ is a domain.

Furthermore, if M is quasi-injective, then $End_R(M)$ is a division ring.

Corollary

A \mathcal{K} -nonsingular uniform module is Hopfian (Every epimorphism is an isomorphism).

Philly Ivan Kimuli

Over a commutative Dedekind domain

Proposition

Let R be a reduced ring and $M = \bigoplus_{\alpha \in \mathcal{J}} M_{\alpha}$ with cyclic R-modules M_{α} . If M is a torsion-free, then M is an endo-reduced module if and only if $M \cong R_R$.

• The cyclic torsion-free endo-reduced \mathbb{Z} -modules are precisely $\cong \mathbb{Z}$.

Theorem

Let $M = \bigoplus_{\alpha \in \mathcal{J}} M_{\alpha}$ be a direct sum of cyclic D-modules M_{α} over a commutative Dedekind domain D. Then the following statements are equivalent:

- (1) M is an endo-reduced module,
- (2) *M* is either a semisimple module with pair-wise non-isomorphic submodules or *M* is a torsion-free module which is isomorphic to *D*_D.

Philly Ivan Kimuli

Kyambogo University (pkimuli@kyu.ac.ug)

Over a commutative Dedekind domain

Example

A finitely generated Abelian group G is endo-reduced as a \mathbb{Z} -module if and only if one of the following two conditions holds:

- (1) $G \cong \bigoplus_{p_{\alpha} \in \mathcal{P}} \mathbb{Z}_{p_{\alpha}}$, where \mathcal{P} is a collection of distinct prime numbers p_{α} of \mathbb{Z} and $\alpha \in \mathbb{Z}^+$;
- (2) $G \cong \mathbb{Z}_{\mathbb{Z}}$.
 - The "finitely generated" hypothesis is not superfluous.

Example

The \mathbb{Z} -module \mathbb{Q} is a non-finitely generated (Abelian group), endo-reduced but fails on the (1) and (2) above.

Bibliography

Johnson, R. E., & Wong, E. T. (1961). Quasi-injective modules and irreducible rings. J. Lond. Math. Soc., 1, 260–268. Kimuli, P. I., & Ssevviiri, D. (2024). Modules with reduced endomorphism rings. J. Algebra Appl., 2650042. Lee, T. K., & Zhou, Y. (2004). Reduced Modules. Rings, Modules, Algebras and Abelian Group. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker. New York. 236. 365–377 Rizvi, S. T., & Roman, C. S. (2007). On \mathcal{K} -nonsingular modules and applications. Comm. Algebra 35(9): 2960-2982.

Acknowledgements

- I gratefully acknowledge Prof. Sophie Frisch for the kind invitation and Prof. Balázs Szendrői for the valuable support.
- This is joint work with Prof. David Ssevviiri, published as: Kimuli, P. I., & Ssevviiri, D. (2024). Modules with reduced endomorphism rings. Journal of Algebra and Its Applications, 23(06), 2650042.