Waring problem for real polynomial rings

Tomasz Kowalczyk Jagiellonian University

Graz, 14 July 2025 Rings and Polynomials

Tomasz Kowalczyk Waring problem for real polynomial rings

Definition

We define the nth Waring number $w_n(R)$ of R as the smallest positive integer g such that any sum of nth powers can be expressed as a sum of at most g nth powers. If such number does not exist we put $w_n(R) = \infty$.

Definition

We define the nth Waring number $w_n(R)$ of R as the smallest positive integer g such that any sum of nth powers can be expressed as a sum of at most g nth powers. If such number does not exist we put $w_n(R) = \infty$.

If $S \subset R$ is a multiplicative set then $w_n(R) \ge w_n(S^{-1}R)$.

Definition

We define the nth Waring number $w_n(R)$ of R as the smallest positive integer g such that any sum of nth powers can be expressed as a sum of at most g nth powers. If such number does not exist we put $w_n(R) = \infty$.

If $S \subset R$ is a multiplicative set then $w_n(R) \ge w_n(S^{-1}R)$. If $\varphi: R \to S$ is an epimorphism then $w_n(R) \ge w_n(S)$.

Does there exist a function g(k) such that any positive integer is expressible as a sum of at most g(k) kth powers?

Does there exist a function g(k) such that any positive integer is expressible as a sum of at most g(k) kth powers? Hilbert showed that g(k) exists and the formula is $g(k) = 2^k + \lfloor (\frac{3}{2})^k \rfloor - 2$. (except in possibly finitely many cases).

Does there exist a function g(k) such that any positive integer is expressible as a sum of at most g(k) kth powers? Hilbert showed that g(k) exists and the formula is $g(k) = 2^k + \lfloor (\frac{3}{2})^k \rfloor - 2$. (except in possibly finitely many cases). If *n* is even then $w_n(\mathbb{Z}) = g(n)$.

Does there exist a function g(k) such that any positive integer is expressible as a sum of at most g(k) kth powers? Hilbert showed that g(k) exists and the formula is $g(k) = 2^k + \lfloor (\frac{3}{2})^k \rfloor - 2$. (except in possibly finitely many cases). If *n* is even then $w_n(\mathbb{Z}) = g(n)$. If *n* is odd then $w_n(\mathbb{Z}) \leq g(n)$.

Why are we interested in real rings/fields?

Denote by $s_n(R)$ the shortest presentation of -1 as a sum of *n*th powers.

Denote by $s_n(R)$ the shortest presentation of -1 as a sum of *n*th powers. Of course if *n* is odd then $s_n(R) = 1$ for any commutative ring with identity.

Denote by $s_n(R)$ the shortest presentation of -1 as a sum of *n*th powers. Of course if *n* is odd then $s_n(R) = 1$ for any commutative ring with identity. If $s_2(R) < \infty$ and 2 is invertible in *R* then $x = \left(\frac{x+1}{2}\right)^2 - \left(\frac{x-1}{2}\right)^2$

Denote by $s_n(R)$ the shortest presentation of -1 as a sum of *n*th powers. Of course if *n* is odd then $s_n(R) = 1$ for any commutative ring with identity. If $s_2(R) < \infty$ and 2 is invertible in *R* then $x = \left(\frac{x+1}{2}\right)^2 - \left(\frac{x-1}{2}\right)^2$ hence, $s_2(R) \le w_2(R) \le s_2(R) + 1$.

Denote by $s_n(R)$ the shortest presentation of -1 as a sum of *n*th powers. Of course if *n* is odd then $s_n(R) = 1$ for any commutative ring with identity. If $s_2(R) < \infty$ and 2 is invertible in *R* then $x = \left(\frac{x+1}{2}\right)^2 - \left(\frac{x-1}{2}\right)^2$ hence, $s_2(R) \le w_2(R) \le s_2(R) + 1$. If 2 is not invertible then $s_2(R) \le w_2(R) \le s_2(R) + 2$.

Denote by $s_n(R)$ the shortest presentation of -1 as a sum of *n*th powers. Of course if *n* is odd then $s_n(R) = 1$ for any commutative ring with identity. If $s_2(R) < \infty$ and 2 is invertible in *R* then $x = \left(\frac{x+1}{2}\right)^2 - \left(\frac{x-1}{2}\right)^2$ hence, $s_2(R) \le w_2(R) \le s_2(R) + 1$. If 2 is not invertible then $s_2(R) \le w_2(R) \le s_2(R) + 2$. If $s_n(R)$ is finite then there is a similar formula

$$n!x = \sum_{r=0}^{n-1} (-1)^{n-1-r} \binom{n-1}{r} [(x+r)^n - r^n]$$

which implies (when n! is a unit) $w_n(R) \le nG(n)(s_n(R)+1)$.

• $w_2(\mathbb{Z}) = w_2(\mathbb{Q}) = 4$ - Lagrange four square theorem,

• $w_2(\mathbb{Z}) = w_2(\mathbb{Q}) = 4$ - Lagrange four square theorem,

- $w_2(\mathbb{Z}) = w_2(\mathbb{Q}) = 4$ Lagrange four square theorem,
- w₂(ℝ[x]) = w₂(ℝ(x)) = 2, easy exercise,
- $w_2(K(x) = w_2(K[x])$ Cassels Theorem,

- $w_2(\mathbb{Z}) = w_2(\mathbb{Q}) = 4$ Lagrange four square theorem,
- $w_2(\mathbb{R}[x]) = w_2(\mathbb{R}(x)) = 2$, easy exercise,
- w₂(K(x) = w₂(K[x]) Cassels Theorem,
- $w_2(\mathbb{Q}[x]) = 5$ Pourchet

- $w_2(\mathbb{Z}) = w_2(\mathbb{Q}) = 4$ Lagrange four square theorem,
- $w_2(\mathbb{R}[x]) = w_2(\mathbb{R}(x)) = 2$, easy exercise,
- $w_2(K(x) = w_2(K[x])$ Cassels Theorem,
- $w_2(\mathbb{Q}[x]) = 5$ Pourchet
- if n ≥ 2, then n + 2 ≤ w₂(ℝ(x₁, x₂,...,x_n)) ≤ 2ⁿ upper bound - Pfister, lower bound - Choi, Lam, Reznick,

- $w_2(\mathbb{Z}) = w_2(\mathbb{Q}) = 4$ Lagrange four square theorem,
- $w_2(\mathbb{R}[x]) = w_2(\mathbb{R}(x)) = 2$, easy exercise,
- w₂(K(x) = w₂(K[x]) Cassels Theorem,
- $w_2(\mathbb{Q}[x]) = 5$ Pourchet
- if n ≥ 2, then n + 2 ≤ w₂(ℝ(x₁, x₂,...,x_n)) ≤ 2ⁿ upper bound - Pfister, lower bound - Choi, Lam, Reznick,
- in particular $w_2(\mathbb{R}(x,y)) = 4$,

- $w_2(\mathbb{Z}) = w_2(\mathbb{Q}) = 4$ Lagrange four square theorem,
- $w_2(\mathbb{R}[x]) = w_2(\mathbb{R}(x)) = 2$, easy exercise,
- w₂(K(x) = w₂(K[x]) Cassels Theorem,
- $w_2(\mathbb{Q}[x]) = 5$ Pourchet
- if n ≥ 2, then n + 2 ≤ w₂(ℝ(x₁, x₂,...,x_n)) ≤ 2ⁿ upper bound - Pfister, lower bound - Choi, Lam, Reznick,
- in particular $w_2(\mathbb{R}(x,y))=4$,
- for any n we have $w_{2n}(\mathbb{Z}[x])=\infty$ Choi, Dai, Lam, Reznick,
- $3 \le w_4(\mathbb{R}(x)) \le 6$ Choi, Lam, Prestel, Reznick

Theorem (CLDR 1982)

We have $w_2(\mathbb{R}[x, y]) = \infty$.

Theorem (CLDR 1982)

We have $w_2(\mathbb{R}[x, y]) = \infty$.

Proof.

We define the family of polynomials:

•
$$F_1 = 1$$

•
$$F_n = F_{n-1}(y - x^{r_{n-1}})^2 + 1$$
 where $2r_{n-1} > \deg F_{n-1}$.

Theorem (CLDR 1982)

We have $w_2(\mathbb{R}[x, y]) = \infty$.

Proof.

We define the family of polynomials:

•
$$F_1 = 1$$
,

•
$$F_n = F_{n-1}(y - x^{r_{n-1}})^2 + 1$$
 where $2r_{n-1} > \deg F_{n-1}$.

 F_n needs n squares and not less.

We have $w_{2d}(\mathbb{R}[x, y]) = \infty$ for any $d \ge 1$.

We have $w_{2d}(\mathbb{R}[x, y]) = \infty$ for any $d \ge 1$.

Proof.

We define the family of polynomials:

• $F_1 = 1$,

•
$$F_n = F_{n-1}(y - x^{r_{n-1}})^{2d} + 1$$
 where $2dr_{n-1} > \deg F_{n-1}$.

We have $w_{2d}(\mathbb{R}[x, y]) = \infty$ for any $d \ge 1$.

Proof.

We define the family of polynomials:

 $F_{1} = 1,$ $F_{n} = F_{n-1}(y - x^{r_{n-1}})^{2d} + 1 \text{ where } 2dr_{n-1} > \deg F_{n-1}.$ $F_{n} \text{ needs } n \text{ 2dth powers and not less.}$

We have $w_{2d}(\mathbb{R}[x, y]) = \infty$ for any $d \ge 1$.

Proof.

We define the family of polynomials:

 $F_{1} = 1,$ $F_{n} = F_{n-1}(y - x^{r_{n-1}})^{2d} + 1 \text{ where } 2dr_{n-1} > \deg F_{n-1}.$ $F_{n} \text{ needs } n \text{ 2dth powers and not less.}$

Corollary

Let (R, \mathfrak{m}) be a regular local ring of dimension at least 3 and with real residue field. Then $w_{2d}(R) = \infty$ for any $d \ge 1$.

If F is a field of finite transcendence degree n over $\mathbb R$ then $w_2(F)\leq 2^n$

If F is a field of finite transcendence degree n over $\mathbb R$ then $w_2(F)\leq 2^n$

Theorem (Becker)

Let F be a real field. Then the following conditions are equivalent:

If F is a field of finite transcendence degree n over $\mathbb R$ then $w_2(F)\leq 2^n$

Theorem (Becker)

Let F be a real field. Then the following conditions are equivalent:

- a) $w_2(F) < \infty$,
- b) $w_{2d}(F) < \infty$ for some d,
- c) $w_{2d}(F) < \infty$ for all d.

If F is a field of finite transcendence degree n over $\mathbb R$ then $w_2(F)\leq 2^n$

Theorem (Becker)

Let F be a real field. Then the following conditions are equivalent:

a)
$$w_2(F) < \infty$$
,

b)
$$w_{2d}(F) < \infty$$
 for some d ,

c)
$$w_{2d}(F) < \infty$$
 for all d .

No similar theorem for general rings are known.

If F is a field of finite transcendence degree n over $\mathbb R$ then $w_2(F) \leq 2^n$

Theorem (Becker)

Let F be a real field. Then the following conditions are equivalent:

- a) $w_2(F) < \infty$,
- b) $w_{2d}(F) < \infty$ for some d,
- c) $w_{2d}(F) < \infty$ for all d.

No similar theorem for general rings are known. Proof of the first part relies on the theory of multiplicative quadratic forms developed by Pfister.

Definition

We define the ring of regular functions $\mathcal{O}(\mathbb{R}^2)$ on \mathbb{R}^2 as

$$\mathcal{O}(\mathbb{R}^2) = \left\{ \left. rac{f}{g} \, | \, f, g, \in \mathbb{R}[x, y], \, g^{-1}(0) = \varnothing
ight\}.$$

Definition

We define the ring of regular functions $\mathcal{O}(\mathbb{R}^2)$ on \mathbb{R}^2 as

$$\mathcal{O}(\mathbb{R}^2) = \left\{ \left. rac{f}{g} \, | \, f,g, \in \mathbb{R}[x,y], \, g^{-1}(0) = arnothing
ight\}.$$

Obviously $w_2(\mathcal{O}(\mathbb{R}^2)) \ge w_2(\mathbb{R}(x,y)) = 4.$

Theorem

Let K be a field of characteristic different from 2. Let φ be a quadratic forms with coefficients in K and $f \in K[x]$ be a polynomial. If f is represented by φ over K(x) then it is represented by φ already over K[x].

$$w_2(\mathcal{O}(\mathbb{R}^2)) = 4$$

Tomasz Kowalczyk Waring problem for real polynomial rings

 $w_2(\mathcal{O}(\mathbb{R}^2)) = 4$

Sketch of a proof: Let $f \in \mathcal{O}(\mathbb{R}^2)$ be a sum of squares.

 $w_2(\mathcal{O}(\mathbb{R}^2)) = 4$

Sketch of a proof: Let $f \in \mathcal{O}(\mathbb{R}^2)$ be a sum of squares. We may assume that the zero set of f is finite and f is a polynomial.

 $w_2(\mathcal{O}(\mathbb{R}^2)) = 4$

Sketch of a proof: Let $f \in \mathcal{O}(\mathbb{R}^2)$ be a sum of squares. We may assume that the zero set of f is finite and f is a polynomial. Of course, $f \in \mathbb{R}[x, y] \subset \mathbb{R}(x)[y] \subset \mathbb{R}(x, y)$.

 $w_2(\mathcal{O}(\mathbb{R}^2)) = 4$

Sketch of a proof: Let $f \in \mathcal{O}(\mathbb{R}^2)$ be a sum of squares. We may assume that the zero set of f is finite and f is a polynomial. Of course, $f \in \mathbb{R}[x, y] \subset \mathbb{R}(x)[y] \subset \mathbb{R}(x, y)$. By assumption, f is a sum of 4 squares in $\mathbb{R}(x, y)$, hence we may apply Cassels theorem with $K = \mathbb{R}(x)$.

 $w_2(\mathcal{O}(\mathbb{R}^2)) = 4$

Sketch of a proof: Let $f \in \mathcal{O}(\mathbb{R}^2)$ be a sum of squares. We may assume that the zero set of f is finite and f is a polynomial. Of course, $f \in \mathbb{R}[x, y] \subset \mathbb{R}(x)[y] \subset \mathbb{R}(x, y)$. By assumption, f is a sum of 4 squares in $\mathbb{R}(x, y)$, hence we may apply Cassels theorem with $K = \mathbb{R}(x)$. We obtain a presentation $f = \sum_{i=1}^{4} \frac{f_i^2}{g^2}$ with $f_i \in \mathbb{R}[x, y]$ and $g \in \mathbb{R}[x]$.

 $w_2(\mathcal{O}(\mathbb{R}^2)) = 4$

Sketch of a proof: Let $f \in \mathcal{O}(\mathbb{R}^2)$ be a sum of squares. We may assume that the zero set of f is finite and f is a polynomial. Of course, $f \in \mathbb{R}[x, y] \subset \mathbb{R}(x)[y] \subset \mathbb{R}(x, y)$. By assumption, f is a sum of 4 squares in $\mathbb{R}(x, y)$, hence we may apply Cassels theorem with $K = \mathbb{R}(x)$. We obtain a presentation $f = \sum_{i=1}^{4} \frac{f_i^2}{g^2}$ with $f_i \in \mathbb{R}[x, y]$ and $g \in \mathbb{R}[x]$. g cannot have any zeros, hence these functions are regular functions. Bruce Reznick posed the following:

Conjecture

Let $f \in \mathbb{R}[x, y]$ be a homogeneous polynomial of degree 4d which is a sum of fourth powers of polynomials. Then we can write $f = f_1^2 + f_2^2$ where f_1, f_2 are nonnegative. Bruce Reznick posed the following:

Conjecture

Let $f \in \mathbb{R}[x, y]$ be a homogeneous polynomial of degree 4d which is a sum of fourth powers of polynomials. Then we can write $f = f_1^2 + f_2^2$ where f_1, f_2 are nonnegative.

This conjecture would imply $w_4(\mathbb{R}[x]) \leq 6$ because of the formula

$$(p_1^2+q_1^2)^2=rac{1}{18}((\sqrt{3}p_1+q_1)^4+(\sqrt{3}p_1-q_1)^4+16q_1^4).$$

Bruce Reznick posed the following:

Conjecture

Let $f \in \mathbb{R}[x, y]$ be a homogeneous polynomial of degree 4d which is a sum of fourth powers of polynomials. Then we can write $f = f_1^2 + f_2^2$ where f_1, f_2 are nonnegative.

This conjecture would imply $w_4(\mathbb{R}[x]) \leq 6$ because of the formula

$$(p_1^2+q_1^2)^2=rac{1}{18}((\sqrt{3}p_1+q_1)^4+(\sqrt{3}p_1-q_1)^4+16q_1^4).$$

Sadly, this conjecture is false [K. Vill 2023]. There is a lot (an open subset) of polynomials which cannot be "doubly positive".

Problems

Tomasz Kowalczyk Waring problem for real polynomial rings

Compute $w_{2d}(\mathbb{R}[x])$. It is known that $2d \le w_{2d}(\mathbb{R}[x])$ however we dont even know if its finite for d > 1.

- Compute $w_{2d}(\mathbb{R}[x])$. It is known that $2d \le w_{2d}(\mathbb{R}[x])$ however we dont even know if its finite for d > 1.
- 2 Compute w_{2d}(O(ℝ²)) for d > 1. Finiteness of w_{2d}(O(ℝ²)) implies finiteness of w_{2d}(ℝ[x]).

- Compute $w_{2d}(\mathbb{R}[x])$. It is known that $2d \le w_{2d}(\mathbb{R}[x])$ however we dont even know if its finite for d > 1.
- 2 Compute w_{2d}(O(ℝ²)) for d > 1. Finiteness of w_{2d}(O(ℝ²)) implies finiteness of w_{2d}(ℝ[x]).
- Sompute w_{2d}(ℝ[[x, y]]) for d > 1. Finiteness of w_{2d}(ℝ[[x, y]]) implies finiteness of w_{2d}(ℝ[x]).

- Compute $w_{2d}(\mathbb{R}[x])$. It is known that $2d \le w_{2d}(\mathbb{R}[x])$ however we dont even know if its finite for d > 1.
- 2 Compute w_{2d}(O(ℝ²)) for d > 1. Finiteness of w_{2d}(O(ℝ²)) implies finiteness of w_{2d}(ℝ[x]).
- Sompute w_{2d}(ℝ[[x, y]]) for d > 1. Finiteness of w_{2d}(ℝ[[x, y]]) implies finiteness of w_{2d}(ℝ[x]).
- Compute $w_{2d}(\operatorname{Int}(\mathbb{Z}))$, where $\operatorname{Int}(\mathbb{Z})$ is the ring of integer valued polynomials. This is not known even for d = 1.

Thank you! :)

Tomasz Kowalczyk Waring problem for real polynomial rings