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Let R be a commutative ring with an identity and let n be a
positive integer.

Definition

We define the nth Waring number wn(R) of R as the smallest
positive integer g such that any sum of nth powers can be
expressed as a sum of at most g nth powers. If such number does
not exist we put wn(R) = ∞.

If S ⊂ R is a multiplicative set then wn(R) ≥ wn(S
−1R). If

φ : R → S is an epimorphism then wn(R) ≥ wn(S).
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Classical Waring problem

Classical Waring problem stated in 1770 by Edward Waring is the
following:

Does there exist a function g(k) such that any positive integer is
expressible as a sum of at most g(k) kth powers? Hilbert showed
that g(k) exists and the formula is g(k) = 2k + ⌊(32)

k⌋ − 2.
(except in possibly finitely many cases).
If n is even then wn(Z) = g(n).
If n is odd then wn(Z) ≤ g(n).
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Why are we interested in real rings/fields?

Denote by sn(R) the shortest presentation of −1 as a sum of nth
powers.

Of course if n is odd then sn(R) = 1 for any commutative
ring with identity. If s2(R) < ∞ and 2 is invertible in R then
x =

(
x+1
2

)2 − (
x−1
2

)2
hence, s2(R) ≤ w2(R) ≤ s2(R) + 1. If 2 is

not invertible then s2(R) ≤ w2(R) ≤ s2(R) + 2.
If sn(R) is finite then there is a similar formula

n!x =
n−1∑
r=0

(−1)n−1−r

(
n − 1
r

)
[(x + r)n − rn]

which implies (when n! is a unit) wn(R) ≤ nG (n)(sn(R) + 1).
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We say that R is real if −1 is not a sum of squares in R.

w2(Z) = w2(Q) = 4 - Lagrange four square theorem,

w2(R[x ]) = w2(R(x)) = 2, easy exercise,
w2(K (x) = w2(K [x ]) Cassels Theorem,

w2(Q[x ]) = 5 - Pourchet

if n ≥ 2, then n + 2 ≤ w2(R(x1, x2, . . . , xn)) ≤ 2n - upper
bound - Pfister, lower bound - Choi, Lam, Reznick,

in particular w2(R(x , y)) = 4,
for any n we have w2n(Z[x ]) = ∞ - Choi, Dai, Lam, Reznick,
3 ≤ w4(R(x)) ≤ 6 - Choi, Lam, Prestel, Reznick
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How does one prove things like this?

Theorem (CLDR 1982)

We have w2(R[x , y ]) = ∞.

Proof.

We define the family of polynomials:

F1 = 1,

Fn = Fn−1(y − x rn−1)2 + 1 where 2rn−1 > deg Fn−1.

Fn needs n squares and not less.

Tomasz Kowalczyk Waring problem for real polynomial rings



How does one prove things like this?

Theorem (CLDR 1982)

We have w2(R[x , y ]) = ∞.

Proof.

We define the family of polynomials:

F1 = 1,

Fn = Fn−1(y − x rn−1)2 + 1 where 2rn−1 > deg Fn−1.

Fn needs n squares and not less.

Tomasz Kowalczyk Waring problem for real polynomial rings



How does one prove things like this?

Theorem (CLDR 1982)

We have w2(R[x , y ]) = ∞.

Proof.

We define the family of polynomials:

F1 = 1,

Fn = Fn−1(y − x rn−1)2 + 1 where 2rn−1 > deg Fn−1.

Fn needs n squares and not less.

Tomasz Kowalczyk Waring problem for real polynomial rings



Theorem (K. Vill 2023)

We have w2d(R[x , y ]) = ∞ for any d ≥ 1.

Proof.

We define the family of polynomials:

F1 = 1,

Fn = Fn−1(y − x rn−1)2d + 1 where 2drn−1 > deg Fn−1.

Fn needs n 2dth powers and not less.

Corollary

Let (R,m) be a regular local ring of dimension at least 3 and with
real residue field. Then w2d(R) = ∞ for any d ≥ 1.
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Theorem (Pfister)

If F is a field of finite transcendence degree n over R then
w2(F ) ≤ 2n

Theorem (Becker)

Let F be a real field. Then the following conditions are equivalent:

a) w2(F ) < ∞,
b) w2d(F ) < ∞ for some d ,
c) w2d(F ) < ∞ for all d .

No similar theorem for general rings are known.
Proof of the first part relies on the theory of multiplicative
quadratic forms developed by Pfister.
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A bit of real algebraic geometry

Definition

We define the ring of regular functions O(R2) on R2 as

O(R2) =
{

f

g
| f , g ,∈ R[x , y ], g−1(0) = ∅

}
.

Obviously w2(O(R2)) ≥ w2(R(x , y)) = 4.
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A bit of quadratic forms

Theorem

Let K be a field of characteristic different from 2. Let φ be a
quadratic forms with coefficients in K and f ∈ K [x ] be a
polynomial. If f is represented by φ over K (x) then it is
represented by φ already over K [x ].
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Back to real algebraic geometry

Theorem (K. 2025)

w2(O(R2)) = 4

Sketch of a proof: Let f ∈ O(R2) be a sum of squares. We may
assume that the zero set of f is finite and f is a polynomial. Of
course, f ∈ R[x , y ] ⊂ R(x)[y ] ⊂ R(x , y). By assumption, f is a
sum of 4 squares in R(x , y), hence we may apply Cassels theorem
with K = R(x). We obtain a presentation f =

∑4
i=1

f 2i
g2
with

fi ∈ R[x , y ] and g ∈ R[x ]. g cannot have any zeros, hence these
functions are regular functions.
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Reznicks conjecture

Bruce Reznick posed the following:

Conjecture

Let f ∈ R[x , y ] be a homogeneous polynomial of degree 4d which
is a sum of fourth powers of polynomials. Then we can write
f = f 21 + f 22 where f1, f2 are nonnegative.

This conjecture would imply w4(R[x ]) ≤ 6 because of the formula

(p21 + q21)
2 =
1
18

((
√
3p1 + q1)

4 + (
√
3p1 − q1)

4 + 16q41).

Sadly, this conjecture is false [K. Vill 2023]. There is a lot (an
open subset) of polynomials which cannot be ”doubly positive”.
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Problems

1 Compute w2d(R[x ]). It is known that 2d ≤ w2d(R[x ])
however we dont even know if its finite for d > 1.

2 Compute w2d(O(R2)) for d > 1. Finiteness of w2d(O(R2))
implies finiteness of w2d(R[x ]).

3 Compute w2d(R[[x , y ]]) for d > 1. Finiteness of
w2d(R[[x , y ]]) implies finiteness of w2d(R[x ]).

4 Compute w2d(Int(Z)), where Int(Z) is the ring of integer
valued polynomials. This is not known even for d = 1.
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Thank you! :)
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