Ideal Factorization in Leavitt Path Algebras

Zak Mesyan

University of Colorado Colorado Springs USA

July 14, 2025

Coauthors: Gene Abrams and Kulumani M. Rangaswamy

Directed Graphs

- A (directed) graph $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$ consists of two sets E^0, E^1 (the elements of which are called *vertices* and *edges*, respectively), together with functions $\mathbf{s}, \mathbf{r} : E^1 \to E^0$, called *source* and *range*, respectively.
- A vertex $v \in E^0$ for which $\{e \in E^1 \mid \mathbf{s}(e) = v\}$ is finite and nonempty is called *regular*.
- A path μ in E is a finite sequence of edges $\mu = e_1 \cdots e_n$ such that $\mathbf{r}(e_i) = \mathbf{s}(e_{i+1})$ for $i = 1, \dots, n-1$. We define $\mathbf{s}(\mu) := \mathbf{s}(e_1)$ to be the source of μ , and $\mathbf{r}(\mu) := \mathbf{r}(e_n)$ to be the range of p.
- A path $\mu = e_1 \cdots e_n$ in E is a *cycle* if $\mathbf{s}(\mu) = \mathbf{r}(\mu)$ and $\mathbf{s}(e_i) \neq \mathbf{s}(e_j)$ for all $i \neq j$. An *exit* for $\mu = e_1 \cdots e_n$ is an edge $f \in E^1 \setminus \{e_1, \dots, e_n\}$ that satisfies $\mathbf{s}(f) = \mathbf{s}(e_i)$ for some i.
- The extended graph F of E has $F^0 = E^0$ and $F^1 = E^1 \cup \{e^* \mid e \in E^1\}$, where $\mathbf{s}, \mathbf{r} : F^1 \to F^0$ agree with the source and range maps of E on elements of E^1 , and $\mathbf{s}(e^*) = \mathbf{r}(e)$, $\mathbf{r}(e^*) = \mathbf{s}(e)$ for all $e \in E^1$.

Extended Graphs

Let *E* be the following graph.

Extended Graphs

Let *E* be the following graph.

Then the extended graph F of E is as follows.

■ From now on, K will denote an arbitrary field.

Definition

Given a graph $E=(E^0,E^1,\mathbf{s},\mathbf{r})$, the Leavitt path K-algebra (LPA) $L_K(E)$ of E is the K-algebra generated by $\{v\mid v\in E^0\}\cup\{e,e^*\mid e\in E^1\}$, subject to the relations:

(V)
$$vw = \delta_{v,w}v$$
 for all $v, w \in E^0$,
(E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$,
(E2) $\mathbf{r}(e)e^* = e^*\mathbf{s}(e) = e^*$ for all $e \in E^1$,
(CK1) $e^*f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$,
(CK2) $v = \sum_{e \in \mathbf{s}^{-1}(v)} ee^*$ for all regular $v \in E^0$.

■ From now on, K will denote an arbitrary field.

Definition

the relations:

Given a graph $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$, the Leavitt path K-algebra (LPA) $L_K(E)$ of E is the K-algebra generated by $\{v \mid v \in E^0\} \cup \{e, e^* \mid e \in E^1\}$, subject to

(E1)
$$\mathbf{s}(e)e = e\mathbf{r}(e) = e$$
 for all $e \in E^1$,
(E2) $\mathbf{r}(e)e^* = e^*\mathbf{s}(e) = e^*$ for all $e \in E^1$,
(CK1) $e^*f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$,
(CK2) $v = \sum_{e \in \mathbf{s}^{-1}(v)} ee^*$ for all regular $v \in E^0$.

(V) $vw = \delta_{v,w}v$ for all $v, w \in E^0$,

■ $L_K(E)$ is unital if and only if E^0 is finite.

■ From now on, K will denote an arbitrary field.

Definition

Given a graph $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$, the Leavitt path K-algebra (LPA) $L_K(E)$ of E is the K-algebra generated by $\{v \mid v \in E^0\} \cup \{e, e^* \mid e \in E^1\}$, subject to the relations:

(V)
$$vw = \delta_{v,w}v$$
 for all $v, w \in E^0$,
(E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$,
(E2) $\mathbf{r}(e)e^* = e^*\mathbf{s}(e) = e^*$ for all $e \in E^1$,
(CK1) $e^*f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$,
(CK2) $v = \sum_{e \in \mathbf{s}^{-1}(v)} ee^*$ for all regular $v \in E^0$.

- $L_K(E)$ is unital if and only if E^0 is finite.
- Leavitt path algebras were defined independently by Abrams/Aranda Pino (2005) and Ara/Moreno/Pardo (2007).

 \blacksquare From now on, K will denote an arbitrary field.

Definition

the relations:

Given a graph $E=(E^0,E^1,\mathbf{s},\mathbf{r})$, the Leavitt path K-algebra (LPA) $L_K(E)$ of E is the K-algebra generated by $\{v\mid v\in E^0\}\cup\{e,e^*\mid e\in E^1\}$, subject to

(E1)
$$\mathbf{s}(e)e = e\mathbf{r}(e) = e$$
 for all $e \in E^1$,
(E2) $\mathbf{r}(e)e^* = e^*\mathbf{s}(e) = e^*$ for all $e \in E^1$,
(CK1) $e^*f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$,
(CK2) $v = \sum_{e \in \mathbf{s}^{-1}(v)} ee^*$ for all regular $v \in E^0$.

(V) $vw = \delta_{v,w}v$ for all $v, w \in E^0$,

- $L_K(E)$ is unital if and only if E^0 is finite.
- Leavitt path algebras were defined independently by Abrams/Aranda Pino (2005) and Ara/Moreno/Pardo (2007).
- Leavitt path algebras are algebraic analogues of the graph C^* -algebras.

Examples of LPAs

■ For any $n \ge 1$, $\mathbb{M}_n(K) \cong L_K(E)$, where E is the following graph.

$$\bullet^{V_1} \longrightarrow \bullet^{V_2} \longrightarrow \bullet^{V_3} \cdots \cdots \bullet^{V_{n-1}} \longrightarrow \bullet^{V_n}$$

Examples of LPAs

■ For any $n \ge 1$, $\mathbb{M}_n(K) \cong L_K(E)$, where E is the following graph.

$$\bullet^{\,V_1} \longrightarrow \bullet^{\,V_2} \longrightarrow \bullet^{\,V_3} \cdots \cdots \bullet^{\,V_{n-1}} \longrightarrow \bullet^{\,V_n}$$

■ $K[x,x^{-1}] \cong L_K(E)$, where E is the following graph.

Examples of LPAs

■ For any $n \ge 1$, $\mathbb{M}_n(K) \cong L_K(E)$, where E is the following graph.

$$\bullet^{v_1} \longrightarrow \bullet^{v_2} \longrightarrow \bullet^{v_3} \cdots \cdots \bullet^{v_{n-1}} \longrightarrow \bullet^{v_n}$$

■ $K[x,x^{-1}] \cong L_K(E)$, where E is the following graph.

■ For any $n \ge 2$, $L_K(n) \cong L_K(E)$, where E is the following graph.

The Leavitt K-algebra $L_K(n)$ is universal for the property that $L_K(n) \cong L_K(n)^n$ as right $L_K(n)$ -modules, but $L_K(n) \not\cong L_K(n)^m$ for all $2 \leq m < n$.

Ideal Lattices

- A partially-ordered set (L, \leq) is a *lattice*, if for all $a, b \in L$ there exists in L an infimum (meet) $a \wedge b$ and a supremum $a \vee b$ (join).
- A lattice L is *complete* if every $M \subseteq L$ has a meet $\bigwedge M$ and a join $\bigvee M$.
- Let L be a complete lattice, and $a \in L$. Then a is *compact* if for all $M \subseteq L$ such that $a \leq \bigvee M$, there exist $b_1, \ldots, b_n \in M$ satisfying $a \leq (b_1 \vee \cdots \vee b_n)$.
- lacktriangle A complete lattice L is algebraic if every element of L is the join of a set of compact elements.

Fact

For any ring R, the set $\mathcal{I}(R)$ of ideals of R forms an algebraic lattice, with set intersection as meet and ideal addition as join.

Ideal Lattices of LPAs

- A lattice *L* is *distributive* if $a \land (b \lor c) = (a \land b) \lor (a \land c)$ for all $a, b, c \in L$.
- Let L be a complete lattice, and $a \in L$. Then a is supercompact if for all $M \subseteq L$ such that $a \leq \bigvee M$, there exists $b \in M$ satisfying $a \leq b$.
- A complete lattice *L* is *superalgebraic* if every element of *L* is the join of a set of supercompact elements.

Theorem (Miller, 2025)

For every distributive superalgebraic lattice $\it L$ there exists a graph $\it E$ such that

$$L \cong \mathcal{I}(L_K(E)).$$

Unreasonable Commutativity of Ideals in LPAs

Fact

Let R be any commutative ring. Then IJ = JI for all ideals I and J in R.

Theorem (Rangaswamy, 2017)

Let E be any graph. Then IJ = JI for all ideals I and J in $L_K(E)$.

Unreasonable Commutativity of Ideals in LPAs

Fact

Let R be any commutative ring. Then IJ = JI for all ideals I and J in R.

Theorem (Rangaswamy, 2017)

Let E be any graph. Then IJ = JI for all ideals I and J in $L_K(E)$.

Definition

An integral domain in which every finitely generated ideal is principal is called a $\textit{B\'{e}zout}$ domain.

Theorem (Rangaswamy, 2014)

Every finitely generated ideal of $L_K(E)$ is principal, for any graph E.

Unreasonable Commutativity of Ideals in LPAs (Continued)

Definition

A ring R is arithmetical if the ideal lattice $\mathcal{I}(R)$ is distributive, that is

$$I_1 \cap (I_2 + I_3) = I_1 \cap I_2 + I_1 \cap I_3$$

for all ideals I_1, I_2, I_3 of R.

An arithmetical integral domain is called a *Prüfer* domain.

Theorem (Rangaswamy, 2017)

 $L_K(E)$ is arithmetical, for any graph E.

Unreasonable Commutativity of Ideals in LPAs (Continued)

Definition

A *Dedekind domain* is an integral domain in which every proper ideal factors into a (finite) product of prime ideals.

Unreasonable Commutativity of Ideals in LPAs (Continued)

Definition

A $Dedekind\ domain$ is an integral domain in which every proper ideal factors into a (finite) product of prime ideals.

Fact

Every Dedekind domain is *herediatary*, i.e., ideals are projective.

Unreasonable Commutativity of Ideals in LPAs (Continued) Definition

erinitio

A *Dedekind domain* is an integral domain in which every proper ideal factors into a (finite) product of prime ideals.

Fact

Every Dedekind domain is *herediatary*, i.e., ideals are projective.

Theorem (Ara and Goodearl, 2012)

 $L_K(E)$ is hereditary, for any graph E.

Definition

Unreasonable Commutativity of Ideals in LPAs (Continued)

Deminuo

A *Dedekind domain* is an integral domain in which every proper ideal factors into a (finite) product of prime ideals.

Fact

Every Dedekind domain is *herediatary*, i.e., ideals are projective.

Theorem (Ara and Goodearl, 2012)

 $L_K(E)$ is hereditary, for any graph E.

Question

Which ideals in $L_K(E)$ can be factored into products of prime ideals?

Definition A Dedekind domain is an integral domain in which every proper ideal factors

Unreasonable Commutativity of Ideals in LPAs (Continued)

into a (finite) product of prime ideals.

Fact

Every Dedekind domain is *herediatary*, i.e., ideals are projective.

Theorem (Ara and Goodearl, 2012) $L_K(E)$ is hereditary, for any graph E.

Question

Which ideals in $L_K(E)$ can be factored into products of prime ideals?

.....

Question

For which graphs E is it the case that every ideal of $L_K(E)$ can be factored into a product of prime ideals?

More Graph Terminology

- Let $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$ be a graph.
- If $u, v \in E^0$ and there is a path μ in E satisfying $\mathbf{s}(\mu) = u$ and $\mathbf{r}(\mu) = v$, then we write $u \ge v$.
- $H \subseteq E^0$ is hereditary if whenever $u \in H$ and $u \ge v$ for some $v \in E^0$, then $v \in H$.
- $H \subseteq E^0$ is saturated if $\mathbf{r}(\mathbf{s}^{-1}(v)) \subseteq H$ implies that $v \in H$, for any regular $v \in E^0$.
- A nonempty $M \subseteq E^0$ is a maximal tail if $E^0 \setminus M$ is hereditary and saturated, and M is downward directed (i.e., for all $u, v \in M$, there exists $w \in M$ such that $u \ge w$ and $v \ge w$.).
- A breaking vertex of a hereditary saturated $H \subseteq E^0$ is an infinite emitter $w \in E^0 \setminus H$ such that $0 < |\mathbf{s}^{-1}(w) \cap \mathbf{r}^{-1}(E^0 \setminus H)| < \aleph_0$. The set of all breaking vertices of H is denoted by B_H .
- Given a hereditary saturated $H \subseteq E^0$ and $S \subseteq B_H$, (H, S) is called an admissible pair.

Ideals in LPAs

Definition

Let E be a graph. For an admissible pair (H,S) in E, define the *quotient* graph $E \setminus (H,S)$ via $(E \setminus (H,S))^0 = (E^0 \setminus H) \cup \{v' \mid v \in B_H \setminus S\}$,

$$(E \setminus (H,S))^1 = \{e \in E^1 \mid r(e) \notin H\} \cup \{e' \mid e \in E^1 \text{ with } \mathbf{r}(e) \in B_H \setminus S\},$$

and extending \mathbf{r}, \mathbf{s} to $E \setminus (H, S)$ by setting $\mathbf{s}(e') = \mathbf{s}(e)$ and $\mathbf{r}(e') = \mathbf{r}(e)'$.

Theorem (Rangaswamy, 2014)

Let I be an ideal of $L_K(E)$, with $H = I \cap E^0$ and $S = \{v \in B_H \mid v^H \in I\}$, where $v^H = v \in \Sigma$

where
$$v^H=v-\sum_{\mathbf{s}(e)=v,\,\mathbf{r}(e)\notin H}ee^*$$
. Then
$$I=I(H,S)+\sum\langle f_i(c_i)\rangle,$$

where I(H, S) the ideal generated by $H \cup \{v^H \mid v \in S\}$, Y is an index set, each c_i is a cycle without exits in $E \setminus (H, S)$, and each $f_i(x) \in K[x] \setminus \langle x \rangle$.

i∈Y

Prime Factorizations in LPAs

Theorem (2020)

- The following are equivalent for any graph E and proper ideal I of $L_K(E)$.
 - 1 *I* is a product of prime ideals.
 - I = $I(H,S) + \sum_{i=1}^{k} \langle f_i(c_i) \rangle$, where each c_i is a cycle without exits in $E \setminus (H,S)$; each $f_i(x) \in K[x] \setminus \langle x \rangle$; $(E \setminus (H,S))^0$ is the union of $n \in \mathbb{Z}^+$ maximal tails; and 0 < k < n.

Prime Factorizations in LPAs

Theorem (2020)

The following are equivalent for any graph E and proper ideal I of $L_K(E)$.

maximal tails; and $0 \le k \le n$.

- **1** *I* is a product of prime ideals.
 - 2 $I = I(H, S) + \sum_{i=1}^{k} \langle f_i(c_i) \rangle$, where each c_i is a cycle without exits in

 $E \setminus (H,S)$; each $f_i(x) \in K[x] \setminus \langle x \rangle$; $(E \setminus (H,S))^0$ is the union of $n \in \mathbb{Z}^+$

Theorem (2020)

- The following are equivalent for any graph E.
- The following are equivalent for any graph L.
- Every proper ideal of L_K(E) is a product of prime ideals.
 There are only finitely many prime ideals minimal over any proper non-prime ideal of L_K(E).
- non-prime ideal of $L_K(E)$.

 3 For every admissible pair (H, S) with $H \neq E^0$, $(E \setminus (H, S))^0$ is the union of $n \in \mathbb{Z}^+$ maximal tails, and there are at most n cycles without exits in $E \setminus (H, S)$.

Semiprime Factorizations in LPAs

Theorem (2020)

The following are equivalent for any graph E and proper ideal I of $L_K(E)$.

- 1 / is a product of semiprime ideals.
- 2 $I = I(H, S) + \sum_{i \in Y} \langle f_i(c_i) \rangle$, where each c_i is a cycle without exits in $E \setminus (H, S)$, each $f_i(x) \in K[x] \setminus \langle x \rangle$; and there exists $n \in \mathbb{Z}^+$ such that, for each $i \in Y$, there are $1 \leq m_1, \ldots, m_k \leq n$ and pairwise non-conjugate irreducible $p_1(x), \ldots, p_k(x) \in K[x]$ satisfying $f_i(x) = p_1^{m_1}(x) \cdots p_k^{m_k}(x)$.

Semiprime Factorizations in LPAs

Theorem (2020)

The following are equivalent for any graph E and proper ideal I of $L_K(E)$.

- 1 *I* is a product of semiprime ideals.
- 2 $I = I(H, S) + \sum_{i \in Y} \langle f_i(c_i) \rangle$, where each c_i is a cycle without exits in $E \setminus (H, S)$, each $f_i(x) \in K[x] \setminus \langle x \rangle$; and there exists $n \in \mathbb{Z}^+$ such that, for each $i \in Y$, there are $1 \leq m_1, \ldots, m_k \leq n$ and pairwise non-conjugate irreducible $p_1(x), \ldots, p_k(x) \in K[x]$ satisfying $f_i(x) = p_1^{m_1}(x) \cdots p_k^{m_k}(x)$.

Theorem (2020)

The following are equivalent for any graph E.

- **1** Every proper ideal of $L_K(E)$ is a product of semiprime ideals.
- 2 For any hereditary saturated $H \subseteq E^0$, there are only finitely many cycles c in E whose vertices do not lie in H, but $\mathbf{r}(e) \in H$ for all exits e of c.

■ Let E be the following (infinite clock) graph.

■ Let E be the following (infinite clock) graph.

■ In E the nonempty hereditary saturated sets of vertices are of the form $\{u\} \cup V$, where $V \subseteq \{v_1, v_2, v_3, \dots\}$.

■ Let E be the following (infinite clock) graph.

- In E the nonempty hereditary saturated sets of vertices are of the form $\{u\} \cup V$, where $V \subseteq \{v_1, v_2, v_3, \dots\}$.
- Every proper ideal of $L_K(E)$ is a product of semiprime ideals, since E is acyclic.

■ Let E be the following (infinite clock) graph.

- In E the nonempty hereditary saturated sets of vertices are of the form $\{u\} \cup V$, where $V \subseteq \{v_1, v_2, v_3, \dots\}$.
- Every proper ideal of $L_K(E)$ is a product of semiprime ideals, since E is acyclic.
- $(\{u\},\emptyset)$ is an admissible pair in E, with $E\setminus (\{u\},\emptyset)$ as follows.

$$\bullet^{V_1}$$
 \bullet^{V_2} \bullet^{V_3} ...

■ Let E be the following (infinite clock) graph.

- In E the nonempty hereditary saturated sets of vertices are of the form $\{u\} \cup V$, where $V \subseteq \{v_1, v_2, v_3, \dots\}$.
- Every proper ideal of $L_K(E)$ is a product of semiprime ideals, since E is acyclic.
- $(\{u\},\emptyset)$ is an admissible pair in E, with $E\setminus (\{u\},\emptyset)$ as follows.

$$\bullet^{V_1}$$
 \bullet^{V_2} \bullet^{V_3} ...

■ $E \setminus (\{u\}, \emptyset)$ is not the union of finitely many maximal tails, and hence $I(\{u\}, \emptyset)$ is a proper ideal of $L_K(E)$ that is not a product of prime ideals.

Prime-Like Ideals

I = A or I = B.

Definition

Let R be a ring, and let I be a proper ideal of R.

- The *radical* of I, denoted rad(I) (or \sqrt{I}), is the intersection of all the prime ideals of R containing I.
 - **2** *I* is *primary* in case for all ideals *A* and *B* of *R*, $B \subseteq rad(I)$ whenever $AB \subseteq I$ and $A \not\subseteq I$.
 - **3** *I* is *quasi-primary* in case rad(I) is prime.
 - It is quasi-primary in case rad(I) is prime.

 If I is irreducible in case for all ideals A and B of R, $I = A \cap B$ implies that
 - **5** I is *prime-power* in case $I = P^n$ for some prime ideal P of R and $n \in \mathbb{Z}^+$.

Prime-Like Ideals in LPAs

Proposition (2020)

- The following are equivalent for any graph E and proper ideal I of $L_K(E)$.
 - 1 *I* is primary.
 - 2 / is quasi-primary.
 - 3 / is irreducible.
 - 4 / is prime-power.

Prime-Like Ideals in LPAs

Proposition (2020)

- The following are equivalent for any graph E and proper ideal I of $L_K(E)$.

 1 I is primary.
 - 2 / is quasi-primary.
 - 3 / is irreducible.
 - 4 *I* is prime-power.

Corollary

- The following are equivalent for any graph E and proper ideal I of $L_K(E)$.
 - *I* is a product of prime ideals.*I* is a product of primary ideals.
- I is a product of quasi-primary ideals.
- 4 / is a product of irreducible ideals.
 - 5 / is a product of prime-power ideals.

More Prime-Like Ideals

Definition

Let R be a ring, and let I be a proper ideal of R.

- 1 I is completely irreducible if I is not the intersection of any set of ideals properly containing I.
- **2** *I* is *strongly prime* if for all ideals J_i $(i \in Y)$ of R, $\bigcap_{i \in Y} J_i \subseteq I$ implies that $J_i \subseteq I$ for some $i \in Y$.

More Prime-Like Ideals

Definition

Let R be a ring, and let I be a proper ideal of R.

- I is completely irreducible if I is not the intersection of any set of ideals properly containing I.
 I is strongly prime if for all ideals J_i (i ∈ Y) of R, ⋂_{i∈Y} J_i ⊆ I implies
- that $J_i \subseteq I$ for some $i \in Y$.

Definition

Let E be a graph, and let $S \subseteq E^0$ be nonempty.

- **1** S satisfies the *countable separation property* (CSP) if there is a countable $T \subseteq S$, such that for every $u \in S$ there is a $v \in T$ satisfying u > v.
 - **2** S satisfies the strong CSP if S satisfies the CSP with respect to some countable $T \subseteq S$, such that T is contained in every nonempty hereditary saturated subset of S.

Completely Irreducible Ideals in LPAs

Theorem (2022)

- 1 / is the product of completely irreducible ideals.
- 2 $I = I(H, S) + \sum_{i=1}^{n} \langle f_i(c_i) \rangle$, where
 - $= r(r, s) + \sum_{i=1}^{r} r_i(c_i)$, where
 - $0 \le n$ is an integer, with n = 0 indicating that I = I(H, S);
 - \bullet each c_i is a cycle without exits in $E \setminus (H, S)$, and each $f_i(x) \in K[x] \setminus \langle x \rangle$;
 - $i \le n$ we have $s(c_i) \in M_i$ and $s(c_i) \notin M_j$ for $j \ne i$, and for $n+1 \le i \le m$ every cycle with source in M_i has an exit and M_i satisfies strong CSP.

Theorem (2022)

- The following are equivalent for any graph E.
- Every proper ideal of L is the product of completely irreducible ideals.
 E satisfies Condition (K) (every cycle source is the source of multiple cycles), and for each admissible pair (H, S) with H ≠ E⁰, (E \ (H, S))⁰ is

the union of finitely many maximal tails satisfying strong CSP.

The following are equivalent for any graph E and proper ideal I of $L_K(E)$.

 \blacksquare $(E \setminus (H,S))^0 = \bigcup_{i=1}^m M_i$, where each M_i is a maximal tail, $n \le m$, for each

Strongly Prime Ideals in LPAs

Theorem (Aljohani/Radler/Rangaswamy/Srivastava, 2021) The following are equivalent for any graph E and proper ideal I of $L_K(E)$.

- 1 / is a product of strongly prime ideals.
- **2** I = I(H, S) and $(E \setminus (H, S))^0$ is the union of finitely many maximal tails M_1, \ldots, M_n , with each M_i satisfying Condition (L) (i.e., every cycle with source in M_i has an exit) and strong CSP, with respect to a countable subset.

Theorem (Aljohani/Radler/Rangaswamy/Srivastava, 2021)

- The following are equivalent for any graph E.
- Every proper ideal of L_K(E) is a product of strongly prime ideals.
 E satisfies Condition (K) (i.e., each vertex which is the source of a cycle is the source of at least two distinct ones), and for every admissible pair (H, S), (E \ (H, S))⁰ is either downward directed satisfying the strong

CSP, or is the union of finitely many maximal tails satisfying strong CSP.

Intersections of Ideals

Theorem (Noether, 1921)

Every ideal in a commutative noetherian unital ring can be expressed as the intersection of finitely many irreducible, respectively primary, respectively relatively-prime-indecomposable, respectively comaximally-indecomposable, ideals.

Intersections of Ideals

Theorem (Noether, 1921)

Every ideal in a commutative noetherian unital ring can be expressed as the intersection of finitely many irreducible, respectively primary, respectively relatively-prime-indecomposable, respectively comaximally-indecomposable, ideals.

Theorem (Fuchs, 1947/1950)

Every ideal in a commutative noetherian unital ring can be expressed as the intersection of finitely many quasi-primary, respectively *primal*, ideals.

Intersections of Ideals

Theorem (Noether, 1921)

Every ideal in a commutative noetherian unital ring can be expressed as the intersection of finitely many irreducible, respectively primary, respectively relatively-prime-indecomposable, respectively comaximally-indecomposable, ideals.

Theorem (Fuchs, 1947/1950)

Every ideal in a commutative noetherian unital ring can be expressed as the intersection of finitely many quasi-primary, respectively *primal*, ideals.

Theorem (Fuchs/Heinzer/Olberding, 2004)

Every ideal in a commutative unital ring can be expressed as the intersection of primal ideals.

Intersections of Prime-Power Ideals in LPAs

Theorem (2022)

Let E be a graph, let $m, r_1, \ldots, r_m \in \mathbb{Z}^+$, and let P_1, \ldots, P_m be distinct prime ideals of $L_K(E)$. Then

$$P_1^{r_1}\cdots P_m^{r_m}=P_1^{r_1}\cap\cdots\cap P_m^{r_m}.$$

Intersections of Prime-Power Ideals in LPAs

Theorem (2022)

Let E be a graph, let $m, r_1, \ldots, r_m \in \mathbb{Z}^+$, and let P_1, \ldots, P_m be distinct prime ideals of $L_K(E)$. Then

$$P_1^{r_1}\cdots P_m^{r_m}=P_1^{r_1}\cap\cdots\cap P_m^{r_m}.$$

Corollary

The following are equivalent for any graph E and proper ideal I of $L_K(E)$.

- **1** *I* is a product of prime (or prime-power) ideals.
 - 2 *I* is an intersection of primary ideals.
 - **3** *I* is an intersection of quasi-primary ideals.
 - 4 / is an intersection of irreducible ideals.
 - 5 / is an intersection of prime-power ideals.

Completely Irreducible and Strongly Prime Ideals in LPAs

Proposition (2022)

The following are equivalent for any graph E and proper ideal I of $L_K(E)$.

- I is a product of completely irreducible ideals.
- f 2 I is an intersection of finitely many completely irreducible ideals

Proposition (Aljohani/Radler/Rangaswamy/Srivastava, 2021)

The following are equivalent for any graph E and proper ideal I of $L_K(E)$.

- **1** *I* is a product of strongly prime ideals.
- **2** *I* is an intersection of finitely many strongly prime ideals.

Products vs. Intersections of Primes in LPAs

Example

Let E be the following graph.

If P is any nonzero prime ideal of $L_K(E)$, then P^2 is not the intersection of any collection of prime ideals of $L_K(E)$.

Products vs. Intersections of Primes in LPAs

Example

Let E be the following graph.

If P is any nonzero prime ideal of $L_K(E)$, then P^2 is not the intersection of any collection of prime ideals of $L_K(E)$.

Proof.

Recall that $L_K(E) \cong K[x, x^{-1}]$. Since $K[x, x^{-1}]$ is a PID, P is maximal, and $P^2 \neq P$.

Products vs. Intersections of Primes in LPAs

Example

Let E be the following graph.

If P is any nonzero prime ideal of $L_K(E)$, then P^2 is not the intersection of any collection of prime ideals of $L_K(E)$.

Proof.

Recall that $L_K(E) \cong K[x, x^{-1}]$. Since $K[x, x^{-1}]$ is a PID, P is maximal, and $P^2 \neq P$.

Suppose that
$$P^2 = \bigcap_{i \in Y} Q_i$$
, for some prime ideals Q_i of $K[x, x^{-1}]$. Then $Q_i \supseteq P$, for each i , and hence $Q_i = P$, as P is maximal. But then $P^2 = \bigcap_{i \in Y} P = P$ contradicts $P^2 \neq P$.

When Products and Intersections of Primes Coincide

Theorem (2020)

The following are equivalent for any graph E.

1 For any $n \in \mathbb{Z}^+$ and prime ideals P_1, \ldots, P_n of $L_K(E)$, we have

$$P_1 \cdots P_n = P_1 \cap \cdots \cap P_n$$
.

- **2** Every proper ideal of $L_K(E)$ is semiprime.
- **3** Every ideal of $L_K(E)$ is of the form I(H, S).
- 4 E satisfies Condition (K), i.e., every vertex in E which is the source of a cycle is the source of at least two distinct cycles.

Thank you!

Bibiliography

- G. Abrams, Z. Mesyan, and K. M. Rangaswamy, *Products of Ideals in Leavitt Path Algebras*, Comm. Algebra **48** (2020) 1853–1871.
- S. Aljohani, K. Radler, K. M. Rangaswamy, and A. Srivastava, *Variations of Primeness and Factorizations of Ideals in Leavitt Path Algebras*, Comm. Algebra **49** (2021) 2729–2757.
 - Z. Mesyan and K. M. Rangaswamy, *Products and Intersections of Prime-Power Ideals in Leavitt Path Algebras*, J. Algebra Appl. **21** (2022) 2250104, 26 pages.
- K. M. Rangaswamy, *The Multiplicative Ideal Theory of Leavitt Path Algebras*, J. Algebra **487** (2017) 173–199.