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Directed Graphs

A (directed) graph E = (E 0,E 1, s, r) consists of two sets E 0,E 1 (the
elements of which are called vertices and edges, respectively), together
with functions s, r : E 1 → E 0, called source and range, respectively.

A vertex v ∈ E 0 for which {e ∈ E 1 | s(e) = v} is finite and nonempty is
called regular.

A path µ in E is a finite sequence of edges µ = e1 · · · en such that
r(ei ) = s(ei+1) for i = 1, . . . , n − 1. We define s(µ) := s(e1) to be the
source of µ, and r(µ) := r(en) to be the range of p.

A path µ = e1 · · · en in E is a cycle if s(µ) = r(µ) and s(ei ) ̸= s(ej) for
all i ̸= j . An exit for µ = e1 · · · en is an edge f ∈ E 1 \ {e1, . . . , en} that
satisfies s(f ) = s(ei ) for some i .

The extended graph F of E has F 0 = E 0 and F 1 = E 1 ∪ {e∗ | e ∈ E 1},
where s, r : F 1 → F 0 agree with the source and range maps of E on
elements of E 1, and s(e∗) = r(e), r(e∗) = s(e) for all e ∈ E 1.



Extended Graphs

Let E be the following graph.
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Then the extended graph F of E is as follows.
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Leavitt Path Algebras

From now on, K will denote an arbitrary field.

Definition

Given a graph E = (E 0,E 1, s, r), the Leavitt path K -algebra (LPA) LK (E ) of
E is the K -algebra generated by {v | v ∈ E 0} ∪ {e, e∗ | e ∈ E 1}, subject to
the relations:
(V) vw = δv ,wv for all v ,w ∈ E 0,
(E1) s(e)e = er(e) = e for all e ∈ E 1,
(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E 1,
(CK1) e∗f = δe,f r(e) for all e, f ∈ E 1,
(CK2) v =

∑
e∈s−1(v) ee

∗ for all regular v ∈ E 0.

LK (E ) is unital if and only if E 0 is finite.

Leavitt path algebras were defined independently by Abrams/Aranda
Pino (2005) and Ara/Moreno/Pardo (2007).

Leavitt path algebras are algebraic analogues of the graph C ∗-algebras.
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Examples of LPAs

For any n ≥ 1, Mn(K ) ∼= LK (E ), where E is the following graph.

•v1 // •v2 // •v3 •vn−1 // •vn

K [x , x−1] ∼= LK (E ), where E is the following graph.
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For any n ≥ 2, LK (n) ∼= LK (E ), where E is the following graph.
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The Leavitt K -algebra LK (n) is universal for the property that
LK (n) ∼= LK (n)

n as right LK (n)-modules, but LK (n) ̸∼= LK (n)
m for all

2 ≤ m < n.



Examples of LPAs

For any n ≥ 1, Mn(K ) ∼= LK (E ), where E is the following graph.

•v1 // •v2 // •v3 •vn−1 // •vn

K [x , x−1] ∼= LK (E ), where E is the following graph.

• ee

For any n ≥ 2, LK (n) ∼= LK (E ), where E is the following graph.

• e1ee

e2

qq

e3

��

en

QQ

The Leavitt K -algebra LK (n) is universal for the property that
LK (n) ∼= LK (n)

n as right LK (n)-modules, but LK (n) ̸∼= LK (n)
m for all

2 ≤ m < n.



Examples of LPAs

For any n ≥ 1, Mn(K ) ∼= LK (E ), where E is the following graph.

•v1 // •v2 // •v3 •vn−1 // •vn

K [x , x−1] ∼= LK (E ), where E is the following graph.

• ee

For any n ≥ 2, LK (n) ∼= LK (E ), where E is the following graph.

• e1ee

e2

qq

e3

��

en

QQ

The Leavitt K -algebra LK (n) is universal for the property that
LK (n) ∼= LK (n)

n as right LK (n)-modules, but LK (n) ̸∼= LK (n)
m for all

2 ≤ m < n.



Ideal Lattices

A partially-ordered set (L,≤) is a lattice, if for all a, b ∈ L there exists in
L an infimum (meet) a ∧ b and a supremum a ∨ b (join).

A lattice L is complete if every M ⊆ L has a meet
∧
M and a join

∨
M.

Let L be a complete lattice, and a ∈ L. Then a is compact if for all
M ⊆ L such that a ≤

∨
M, there exist b1, . . . , bn ∈ M satisfying

a ≤ (b1 ∨ · · · ∨ bn).

A complete lattice L is algebraic if every element of L is the join of a set
of compact elements.

Fact

For any ring R, the set I(R) of ideals of R forms an algebraic lattice, with set
intersection as meet and ideal addition as join.



Ideal Lattices of LPAs

A lattice L is distributive if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all
a, b, c ∈ L.

Let L be a complete lattice, and a ∈ L. Then a is supercompact if for all
M ⊆ L such that a ≤

∨
M, there exists b ∈ M satisfying a ≤ b.

A complete lattice L is superalgebraic if every element of L is the join of
a set of supercompact elements.

Theorem (Miller, 2025)

For every distributive superalgebraic lattice L there exists a graph E such that

L ∼= I(LK (E )).



Unreasonable Commutativity of Ideals in LPAs

Fact

Let R be any commutative ring. Then IJ = JI for all ideals I and J in R.

Theorem (Rangaswamy, 2017)

Let E be any graph. Then IJ = JI for all ideals I and J in LK (E ).

Definition

An integral domain in which every finitely generated ideal is principal is called
a Bézout domain.

Theorem (Rangaswamy, 2014)

Every finitely generated ideal of LK (E ) is principal, for any graph E .
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Unreasonable Commutativity of Ideals in LPAs (Continued)

Definition

A ring R is arithmetical if the ideal lattice I(R) is distributive, that is

I1 ∩ (I2 + I3) = I1 ∩ I2 + I1 ∩ I3

for all ideals I1, I2, I3 of R.

An arithmetical integral domain is called a Prüfer domain.

Theorem (Rangaswamy, 2017)

LK (E ) is arithmetical, for any graph E .



Unreasonable Commutativity of Ideals in LPAs (Continued)

Definition

A Dedekind domain is an integral domain in which every proper ideal factors
into a (finite) product of prime ideals.

Fact

Every Dedekind domain is herediatary, i.e., ideals are projective.

Theorem (Ara and Goodearl, 2012)

LK (E ) is hereditary, for any graph E .

Question

Which ideals in LK (E ) can be factored into products of prime ideals?

Question

For which graphs E is it the case that every ideal of LK (E ) can be factored
into a product of prime ideals?
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More Graph Terminology

Let E = (E 0,E 1, s, r) be a graph.

If u, v ∈ E 0 and there is a path µ in E satisfying s(µ) = u and r(µ) = v ,
then we write u ≥ v .

H ⊆ E 0 is hereditary if whenever u ∈ H and u ≥ v for some v ∈ E 0, then
v ∈ H.

H ⊆ E 0 is saturated if r(s−1(v)) ⊆ H implies that v ∈ H, for any regular
v ∈ E 0.

A nonempty M ⊆ E 0 is a maximal tail if E 0 \M is hereditary and
saturated, and M is downward directed (i.e., for all u, v ∈ M, there exists
w ∈ M such that u ≥ w and v ≥ w .).

A breaking vertex of a hereditary saturated H ⊆ E 0 is an infinite emitter
w ∈ E 0\H such that 0 < |s−1(w) ∩ r−1(E 0\H)| < ℵ0. The set of all
breaking vertices of H is denoted by BH .

Given a hereditary saturated H ⊆ E 0 and S ⊆ BH , (H, S) is called an
admissible pair.



Ideals in LPAs

Definition

Let E be a graph. For an admissible pair (H,S) in E , define the quotient
graph E\(H,S) via (E\(H,S))0 = (E 0\H) ∪ {v ′ | v ∈ BH\S},

(E\(H, S))1 = {e ∈ E 1 | r(e) /∈ H} ∪ {e ′ | e ∈ E 1 with r(e) ∈ BH\S},

and extending r, s to E\(H, S) by setting s(e ′) = s(e) and r(e ′) = r(e)′.

Theorem (Rangaswamy, 2014)

Let I be an ideal of LK (E ), with H = I ∩ E 0 and S = {v ∈ BH | vH ∈ I},
where vH = v −

∑
s(e)=v , r(e)/∈H ee∗. Then

I = I (H,S) +
∑
i∈Y

⟨fi (ci )⟩,

where I (H,S) the ideal generated by H ∪ {vH | v ∈ S}, Y is an index set,
each ci is a cycle without exits in E\(H, S), and each fi (x) ∈ K [x ] \ ⟨x⟩.



Prime Factorizations in LPAs

Theorem (2020)

The following are equivalent for any graph E and proper ideal I of LK (E ).

1 I is a product of prime ideals.

2 I = I (H,S) +
∑k

i=1⟨fi (ci )⟩, where each ci is a cycle without exits in
E \ (H,S); each fi (x) ∈ K [x ] \ ⟨x⟩; (E \ (H, S))0 is the union of n ∈ Z+

maximal tails; and 0 ≤ k ≤ n.

Theorem (2020)

The following are equivalent for any graph E .

1 Every proper ideal of LK (E ) is a product of prime ideals.

2 There are only finitely many prime ideals minimal over any proper
non-prime ideal of LK (E ).

3 For every admissible pair (H, S) with H ̸= E 0, (E \ (H,S))0 is the union
of n ∈ Z+ maximal tails, and there are at most n cycles without exits in
E \ (H,S).
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Semiprime Factorizations in LPAs

Theorem (2020)

The following are equivalent for any graph E and proper ideal I of LK (E ).

1 I is a product of semiprime ideals.

2 I = I (H,S) +
∑

i∈Y ⟨fi (ci )⟩, where each ci is a cycle without exits in
E\(H, S), each fi (x) ∈ K [x ] \ ⟨x⟩; and there exists n ∈ Z+ such that, for
each i ∈ Y , there are 1 ≤ m1, . . . ,mk ≤ n and pairwise non-conjugate
irreducible p1(x), . . . , pk(x) ∈ K [x ] satisfying fi (x) = pm1

1 (x) · · · pmk
k (x).

Theorem (2020)

The following are equivalent for any graph E .

1 Every proper ideal of LK (E ) is a product of semiprime ideals.

2 For any hereditary saturated H ⊆ E 0, there are only finitely many cycles
c in E whose vertices do not lie in H, but r(e) ∈ H for all exits e of c .
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An Example

Let E be the following (infinite clock) graph.
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•v3
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vv

· · ·

•u

In E the nonempty hereditary saturated sets of vertices are of the form
{u} ∪ V , where V ⊆ {v1, v2, v3, . . . }.
Every proper ideal of LK (E ) is a product of semiprime ideals, since E is
acyclic.

({u}, ∅) is an admissible pair in E , with E \ ({u}, ∅) as follows.

•v1 •v2 •v3 · · ·

E \ ({u}, ∅) is not the union of finitely many maximal tails, and hence
I ({u}, ∅) is a proper ideal of LK (E ) that is not a product of prime ideals.
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Prime-Like Ideals

Definition

Let R be a ring, and let I be a proper ideal of R.

1 The radical of I , denoted rad(I ) (or
√
I ), is the intersection of all the

prime ideals of R containing I .

2 I is primary in case for all ideals A and B of R, B ⊆ rad(I ) whenever
AB ⊆ I and A ̸⊆ I .

3 I is quasi-primary in case rad(I ) is prime.

4 I is irreducible in case for all ideals A and B of R, I = A ∩ B implies that
I = A or I = B.

5 I is prime-power in case I = Pn for some prime ideal P of R and n ∈ Z+.



Prime-Like Ideals in LPAs

Proposition (2020)

The following are equivalent for any graph E and proper ideal I of LK (E ).

1 I is primary.

2 I is quasi-primary.

3 I is irreducible.

4 I is prime-power.

Corollary

The following are equivalent for any graph E and proper ideal I of LK (E ).

1 I is a product of prime ideals.

2 I is a product of primary ideals.

3 I is a product of quasi-primary ideals.

4 I is a product of irreducible ideals.

5 I is a product of prime-power ideals.
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More Prime-Like Ideals

Definition

Let R be a ring, and let I be a proper ideal of R.

1 I is completely irreducible if I is not the intersection of any set of ideals
properly containing I .

2 I is strongly prime if for all ideals Ji (i ∈ Y ) of R,
⋂

i∈Y Ji ⊆ I implies
that Ji ⊆ I for some i ∈ Y .

Definition

Let E be a graph, and let S ⊆ E 0 be nonempty.

1 S satisfies the countable separation property (CSP) if there is a countable
T ⊆ S , such that for every u ∈ S there is a v ∈ T satisfying u ≥ v .

2 S satisfies the strong CSP if S satisfies the CSP with respect to some
countable T ⊆ S , such that T is contained in every nonempty hereditary
saturated subset of S .
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Completely Irreducible Ideals in LPAs

Theorem (2022)

The following are equivalent for any graph E and proper ideal I of LK (E ).

1 I is the product of completely irreducible ideals.

2 I = I (H,S) +
∑n

i=1⟨fi (ci )⟩, where
0 ≤ n is an integer, with n = 0 indicating that I = I (H,S);
each ci is a cycle without exits in E \ (H,S), and each fi (x) ∈ K [x ] \ ⟨x⟩;
(E \ (H,S))0 =

⋃m
i=1 Mi , where each Mi is a maximal tail, n ≤ m, for each

i ≤ n we have s(ci ) ∈ Mi and s(ci ) /∈ Mj for j ̸= i , and for n + 1 ≤ i ≤ m
every cycle with source in Mi has an exit and Mi satisfies strong CSP.

Theorem (2022)

The following are equivalent for any graph E .

1 Every proper ideal of L is the product of completely irreducible ideals.

2 E satisfies Condition (K) (every cycle source is the source of multiple
cycles), and for each admissible pair (H, S) with H ̸= E 0, (E \ (H,S))0 is
the union of finitely many maximal tails satisfying strong CSP.



Strongly Prime Ideals in LPAs

Theorem (Aljohani/Radler/Rangaswamy/Srivastava, 2021)

The following are equivalent for any graph E and proper ideal I of LK (E ).

1 I is a product of strongly prime ideals.

2 I = I (H,S) and (E \ (H, S))0 is the union of finitely many maximal tails
M1, . . . ,Mn, with each Mi satisfying Condition (L) (i.e., every cycle with
source in Mi has an exit) and strong CSP, with respect to a countable
subset.

Theorem (Aljohani/Radler/Rangaswamy/Srivastava, 2021)

The following are equivalent for any graph E .

1 Every proper ideal of LK (E ) is a product of strongly prime ideals.

2 E satisfies Condition (K) (i.e., each vertex which is the source of a cycle
is the source of at least two distinct ones), and for every admissible pair
(H,S), (E \ (H, S))0 is either downward directed satisfying the strong
CSP, or is the union of finitely many maximal tails satisfying strong CSP.



Intersections of Ideals

Theorem (Noether, 1921)

Every ideal in a commutative noetherian unital ring can be expressed as the
intersection of finitely many irreducible, respectively primary, respectively
relatively-prime-indecomposable, respectively comaximally-indecomposable,
ideals.

Theorem (Fuchs, 1947/1950)

Every ideal in a commutative noetherian unital ring can be expressed as the
intersection of finitely many quasi-primary, respectively primal, ideals.

Theorem (Fuchs/Heinzer/Olberding, 2004)

Every ideal in a commutative unital ring can be expressed as the intersection
of primal ideals.
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Intersections of Prime-Power Ideals in LPAs

Theorem (2022)

Let E be a graph, let m, r1, . . . , rm ∈ Z+, and let P1, . . . ,Pm be distinct prime
ideals of LK (E ). Then

P r1
1 · · ·P rm

m = P r1
1 ∩ · · · ∩ P rm

m .

Corollary

The following are equivalent for any graph E and proper ideal I of LK (E ).

1 I is a product of prime (or prime-power) ideals.

2 I is an intersection of primary ideals.

3 I is an intersection of quasi-primary ideals.

4 I is an intersection of irreducible ideals.

5 I is an intersection of prime-power ideals.
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Completely Irreducible and Strongly Prime Ideals in LPAs

Proposition (2022)

The following are equivalent for any graph E and proper ideal I of LK (E ).

1 I is a product of completely irreducible ideals.

2 I is an intersection of finitely many completely irreducible ideals

Proposition (Aljohani/Radler/Rangaswamy/Srivastava, 2021)

The following are equivalent for any graph E and proper ideal I of LK (E ).

1 I is a product of strongly prime ideals.

2 I is an intersection of finitely many strongly prime ideals.



Products vs. Intersections of Primes in LPAs

Example

Let E be the following graph.
• ee

If P is any nonzero prime ideal of LK (E ), then P2 is not the intersection of
any collection of prime ideals of LK (E ).

Proof.

Recall that LK (E ) ∼= K [x , x−1]. Since K [x , x−1] is a PID, P is maximal, and
P2 ̸= P.

Suppose that P2 =
⋂

i∈Y Qi , for some prime ideals Qi of K [x , x−1]. Then
Qi ⊇ P, for each i , and hence Qi = P, as P is maximal. But then
P2 =

⋂
i∈Y P = P contradicts P2 ̸= P.
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When Products and Intersections of Primes Coincide

Theorem (2020)

The following are equivalent for any graph E .

1 For any n ∈ Z+ and prime ideals P1, . . . ,Pn of LK (E ), we have

P1 · · ·Pn = P1 ∩ · · · ∩ Pn.

2 Every proper ideal of LK (E ) is semiprime.

3 Every ideal of LK (E ) is of the form I (H,S).

4 E satisfies Condition (K), i.e., every vertex in E which is the source of a
cycle is the source of at least two distinct cycles.



Thank you!
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