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1. Notations and Terminology

➦ R is an integral domain with quotient field K , I a nonzero ideal of R

I−1 = (R : I ) = {x ∈ K |xI ⊆ R} called the inverse of I .

I−1 ∼= HomR(I ,R), so it is also called the dual of I .

I is invertible if IJ = R for some nonzero ideal of R, i.e., II−1 = R.

(I : I ) = {x ∈ K |xI ⊆ I . (I : I ) ∼= EndR(I ) = HomR(I , I ). It is the
largest overring of R where I is an ideal.

I is stable (Sally-Vasconcelos stable) if I is invertible in (I : I )
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Examples from Tensor products of modules and rigidity

➦ Huneke and Weigand proved that for an abstract hypersurface R of
dimension one (that is, a ring of the form S/(f ) where f is a prime
element of the two-dimensional regular local ring S), and M and N
R-modules, at least one of which has constant rank, if M ⊗ N is
torsion-free, then either M or N is free. However, the hypothesis
“hypersurface” cannot be changed to “complete intersection (that is
a ring of the form S/(f1, . . . , fr ), where S is a regular local ring and
(f1, . . . , fr ) is a regular sequence in the maximal ideal)”. They
provided the following example.
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Examples from Tensor products of modules and rigidity

Example

Let R = k[[X 4,X 5,X 6]] ∼= k[[Y ,Z ,W ]]
(YW−Z2,Y 3−W 2)

), I = (X 4,X 5) and

J = (X 4,X 6). Then R is a complete intersection, I ⊗ J is torsion-free, yet
neither I nor J is free.

➦

For ideals I and J of a domain R, they proved that a necessary
condition for I ⊗ J to be torsion-free is that µR(IJ) = µR(I )µR(J).
However, the condition on the number of generators is not sufficient
for I ⊗ J to be torsion-free as it is shown by the following example.

Example

Let R = k[[X 4,X 5]], I = (X 4,X 5) and J = (X 8,X 10). Then
µR(IJ) = µR(I )µR(J), but I ⊗ J has torsion.
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Examples from Tensor products of modules and rigidity

➦ Finally, given a ring extension R ⫋ S and an S-module N.Then
S ⊗R N has two S-module structures. The “left” structure coming
from the first factor and the “right” structure coming from the
S-module structure on N. They proved that these structures are not
even isomorphic. They illustrated this phenomenon with the following
example in which the ring extension is actually birational.

Example

Let R = k[[X 4,X 5]] ⫋ S = k[[X 4,X 5,X 6]], and let J = X 4S + X 6S .
Then J ⊗R S ̸∼= S ⊗R J as “left” S-modules. Moreover, if I = X 4S +X 5S ,
then I ⊗S J ⊗R S and I ⊗S S ⊗R J are not isomorphic as R-modules.
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Examples from Huneke-Weigand’s Conjecture

➦ Conjecture 1.1 (Huneke-Wiegand conjecture). Let R be a Gorenstein
local domain. Let M be a maximal Cohen-Macaulay R-module. If
M ⊗R Hom(M,R) is torsionfree, then M is free.

An ideal-theoretic version of the conjecture sustains that: (HW) If R
is a one-dimensional Gorenstein local domain and I is a non-principal
ideal of R, then I ⊗R HomR(I ,R) has nonzero torsion.
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Examples from Huneke-Weigand’s Conjecture

Example

Let k be a field and X an indeterminate over k . Let

S = k[[X 2,X 3]]
R = k[[X 3,X 5,X 7]]
m = (X 3,X 5,X 7)

Clearly, R is a one-dimensional local Noetherian domain with maximal
ideal m. Further, one can check that
m−1 = (m : m) = S and R = k[[X ]], m ⊗R m−1 has nonzero torsion.

➦

Example

Let k be a field, X an indeterminate over k , R = k[[X 3,X 4]], and
I = (X 4,X 6). Then R is a one-dimensional local Noetherian divisorial
domain (hence Gorenstein) with maximal ideal m := (X 3,X 4), and
D := (I : I ) = k[[X 2,X 3]] is local with maximal ideal
M := (X 2,X 3) = X 2k[[X ]]. Moreover, I ⊗R I−1 has nonzero torsion.

Here too, observe that R = k[[X 3,X 4]], being isomorphic to k[[Y ,Z ]]
(Y 4−Z3)

,

is a hypersurface of dimension one and so the conjecture holds by [32,
Theorem 3.7].
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Examples from Trace Properties over integral domains

➦ Let R be an integral domain and let M be an R-module. Then the
trace of M is the ideal of R generated by the set
{f (m)|f ∈ HomR(M,R),m ∈ M}.
An ideal I of R is a trace ideal if I is the trace of some R-module,
and R has the trace property (or is a TP-domain) if every ideal is a
trace ideal. in [22], it was proved that the trace of I (as an
R-module) is simply the product of I with its inverse I−1, and R has
the trace property if for every (nonzero) ideal I , either II−1 = R or
II−1 is a prime ideal of R.

T. Lucas introduced several types of trace properties including TPP
(trace property for primary ideals) and PRIP (primary ideal Q such
that Q−1 is a ring implies Q is prime). He provided an example of a
Noetherian TP domain which is not a PRIP domain.
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Examples from Trace Properties over integral domains

Example

Let R = K [[X 3,X 4,X 5]]. Then R is a Noetherian local domain with
maximal ideal M = (X 3,X 4,X 5) and M−1 = K [[X ]] = R. By [22,
Theorem 3.5], R is a TP domain. However, the ideal I = (X 3,X 4) . is a
proper M-primary ideal with I−1 = K [[X ]] is a ring but I is not prime.
Hence R does not have PRIP.

➦
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Examples from Cores of Ideals

➦ An ideal J ⊆ I in a commutative ring R is a reduction of I if
JI n = I n+1 for some positive integer n.

The notion of reduction was introduced by Northcott and Rees [41] to
contribute to the analytic theory of ideals in Noetherian local rings
with infinite residue field. The core of I , denoted core(I ), is the
intersection of all reductions of I .

The core was initially introduced by Sally [47] and appeared, among
others, in the context of Briancon-Skoda’s Theorem, which asserts
that if R is regular with dimension d , then core(I ) contains the
integral closure of I d [31, Chapter 13].
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Examples from Cores of Ideals

Example

([46, Example 4.9]). Let k be an infinite field of positive characteristic p
and q ≥ p be an integer not divisible by p. Consider the numerical
semigroup ring R = k[[X p2 ,X pq,X pq+q]], and let I = m be the maximal
ideal of R. Then R is a one-dimensional local Gorenstein domain, and
core(I ) ⫌ (Jn+1 : I n) for any minimal reduction J of I .

➦

In Noetherian settings, the class of domains satisfying
core(I ) = I 2I−1 for all nonzero ideals lies strictly between the two
classes of TP-domains and one-dimensional domains; and the
equivalence holds in a large class of Noetherian domains. The next
example features a one-dimensional Noetherian local domain with
maximal ideal M such that core(M) = M3 ⫋ M2M−1.
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Examples from Cores of Ideals

Example

([33, Example 3.2]) Let k be a field and X an indeterminate over k . Let
R := k[[X 3,X 4]]. Then, R is a one-dimensional Noetherian local domain
with maximal ideal M := (X 3,X 4) and hence
T := (M : M) = M−1 = k[[X 3,X 4,X 5]]. Then
core(M) = M3 ⫋ M2 = M2T = M2M−1.

➦
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Examples from m-full and weakly m-full ideals

➦ An ideal I of R is called m-full if (mI : x) = I for some x ∈ m, and I
is said to be weakly m-full ideal provided that (mI : m) ⊆ I ), or
equivalently, (mI : m) = I .

Following is an example of weakly m-full ideals that are not m-full.

Example

([15, Example 2.7]) Let R = C[[X 4,X 5,X 6]]. Then R is a one-dimensional
complete intersection ring and Q = (X 4) is a parameter ideal of R. Set
I = (Q : m). Then I is weakly m-full but not m-full.
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Examples from star operations and overrings

➦ In [30], it is proved that if (R,M) is a local Noetherian domain such
that M−1 is local with principal maximal ideal N ̸= M and
dimR/M(M−1/M) = 3, then R has exactly three star operations.

Example

(2) ([30, Example 3.10]. Let k be a field, R = k[[X 3,X 5,X 7]], and let M
denote the maximal ideal of R. Then
M−1 = k[[X 2,X 3]] = R + RX 2 + RX 4, dimR/MM−1/M = 3, and N3 ⊆ M
but N2 ̸⊆ M, where N is the maximal ideal of M−1. So R has exactly 4
star operations
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Main Results

Theorem

Let k be a field, X an indeterminate over k and q ≥ 3 be an odd integer.
Then R = k[X 2,X q] (resp. R = k[[X 2,X q]]) is a stable (resp. strongly
stable) domain.

➦

Theorem

Let 1 < p < q be positive integers such that p and q are relatively prime,
R = k[[X p,X q]] (resp. R = k[X p,X q]) and M = (X p,X q). Then M is
strongly stable if and only if p = 2 and q is odd.
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Main Results

Corollary

Let k be a field, X an indeterminate over k , p ≥ 2 be a positive integer,
R = k[[X p,X p+1]] (resp. R = k[X p,X p+1]) and M = (X p,X p+1). The
following statement are equivalent:
(1) R is strongly stable (resp. stable).
(2) M is strongly stable.
(3) p = 2.

➦

Theorem

Let k be a field, X an indeterminate over k , p ≥ 2 a positive integer,
R = k[X p,X p+1,X p+2] (resp. R = k[[X p,X p+1,X p+2]]), and
M = (X p,X p+1,X p+2). The following statements are equivalent.
(1) M is strongly stable.
(2) p = 2 or p = 3.

Corollary

Let k be a field, X an indeterminate over k , p ≥ 2 a positive integer and
R = k[[X p,X p+1,X p+2]]. Then R is strongly stable if and only if p = 2.
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On the strongly stable class semigroup of an integral domain

➦ By SStable(R) we denote the set of all nonzero strongly stable ideals
of R.

SStable(R) is a multiplicative monoid.

SS(R) = SStable(R)/P(R) is called the strongly stable class
semigroup of R.

R is completely integrally closed if and only if SS(R) is the trivial
semigroup.
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