On the Stability of Certain Classes of Semigroup Rings

Abdeslam MIMOUNI

King Fahd University of Petroleum & Minerals, Saudi Arabia

Conference "Rings and Polynomials" in Graz, Austria, July 14-19, 2025: Contribution to the memory of Pr Fanz Halter-Koch

Conference "Rings and Polynomials" in Gra

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigree 1/20

- Notations and Terminology
- Examples from Tensor products of modules and rigidity
- 3 Examples from Huneke-Weigand's Conjecture
- 4 Examples from Trace Properties over integral domains
- 5 Examples from Cores of Ideals
- 6 Examples from m-full and weakly m-full ideals
- 7 Examples from star operations and overrings
- 8 Main Results

- Notations and Terminology
- 2 Examples from Tensor products of modules and rigidity
- 3 Examples from Huneke-Weigand's Conjecture
- 4 Examples from Trace Properties over integral domains
- 5 Examples from Cores of Ideals
- 6 Examples from m-full and weakly m-full ideals
- 7 Examples from star operations and overrings
- 8 Main Results

- Notations and Terminology
- 2 Examples from Tensor products of modules and rigidity
- 3 Examples from Huneke-Weigand's Conjecture
- 4 Examples from Trace Properties over integral domains
- 5 Examples from Cores of Ideals
- 6 Examples from m-full and weakly m-full ideals
- Examples from star operations and overrings
- 8 Main Results

- Notations and Terminology
- 2 Examples from Tensor products of modules and rigidity
- 3 Examples from Huneke-Weigand's Conjecture
- Examples from Trace Properties over integral domains
 - 5 Examples from Cores of Ideals
 - 6 Examples from m-full and weakly m-full ideals
 - 7 Examples from star operations and overrings
 - 8 Main Results

- Notations and Terminology
- 2 Examples from Tensor products of modules and rigidity
- 8 Examples from Huneke-Weigand's Conjecture
- Examples from Trace Properties over integral domains
- 5 Examples from Cores of Ideals
 - 6 Examples from m-full and weakly m-full ideals
 - 7 Examples from star operations and overrings
 - 8 Main Results

- Notations and Terminology
- 2 Examples from Tensor products of modules and rigidity
- 8 Examples from Huneke-Weigand's Conjecture
- 4 Examples from Trace Properties over integral domains
- 5 Examples from Cores of Ideals
- 6 Examples from m-full and weakly m-full ideals
 - Examples from star operations and overrings
 - 8 Main Results

- Notations and Terminology
- 2 Examples from Tensor products of modules and rigidity
- 8 Examples from Huneke-Weigand's Conjecture
- 4 Examples from Trace Properties over integral domains
- 5 Examples from Cores of Ideals
- 6 Examples from m-full and weakly m-full ideals
- Examples from star operations and overrings

B Main Results

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigree 2 / 20

- Notations and Terminology
- 2 Examples from Tensor products of modules and rigidity
- 8 Examples from Huneke-Weigand's Conjecture
- 4 Examples from Trace Properties over integral domains
- 5 Examples from Cores of Ideals
- 6 Examples from m-full and weakly m-full ideals
- 7 Examples from star operations and overrings
- 8 Main Results

- Notations and Terminology
- 2 Examples from Tensor products of modules and rigidity
- 8 Examples from Huneke-Weigand's Conjecture
- 4 Examples from Trace Properties over integral domains
- 5 Examples from Cores of Ideals
- 6 Examples from m-full and weakly m-full ideals
- 7 Examples from star operations and overrings
- 8 Main Results

- Notations and Terminology
- 2 Examples from Tensor products of modules and rigidity
- 8 Examples from Huneke-Weigand's Conjecture
- 4 Examples from Trace Properties over integral domains
- 5 Examples from Cores of Ideals
- 6 Examples from m-full and weakly m-full ideals
- 7 Examples from star operations and overrings
- 8 Main Results

Notations and Terminology

- Examples from Tensor products of modules and rigidity
- Examples from Huneke-Weigand's Conjecture
- 4 Examples from Trace Properties over integral domains
- 5 Examples from Cores of Ideals
- 6 Examples from m-full and weakly m-full ideals
- Examples from star operations and overrings
- 8 Main Results

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigre 3/20

R is an integral domain with quotient field K, I a nonzero ideal of R

- $I^{-1} = (R : I) = \{x \in K | xI \subseteq R\}$ called the inverse of I.
- $I^{-1} \cong Hom_R(I, R)$, so it is also called the dual of I.
- I is invertible if IJ = R for some nonzero ideal of R, i.e., $II^{-1} = R$.
- $(I:I) = \{x \in K | xI \subseteq I. (I:I) \cong End_R(I) = Hom_R(I,I).$ It is the largest overring of R where I is an ideal.

Conference "Rings and Polynomials" in Gra

• R is an integral domain with quotient field K, I a nonzero ideal of R

- ▶ $I^{-1} = (R : I) = \{x \in K | xI \subseteq R\}$ called the inverse of I.
 - $I^{-1} \cong Hom_R(I, R)$, so it is also called the dual of I.
 - I is invertible if IJ = R for some nonzero ideal of R, i.e., $II^{-1} = R$.
 - $(I:I) = \{x \in K | xI \subseteq I. (I:I) \cong End_R(I) = Hom_R(I,I).$ It is the largest overring of R where I is an ideal.

Conference "Rings and Polynomials" in Gra

- R is an integral domain with quotient field K, I a nonzero ideal of R
- $I^{-1} = (R : I) = \{x \in K | xI \subseteq R\}$ called the inverse of I.
- → $I^{-1} \cong Hom_R(I, R)$, so it is also called the dual of I.
 - I is invertible if IJ = R for some nonzero ideal of R, i.e., $II^{-1} = R$.
 - $(I : I) = \{x \in K | xI \subseteq I. (I : I) \cong End_R(I) = Hom_R(I, I).$ It is the largest overring of R where I is an ideal.

- R is an integral domain with quotient field K, I a nonzero ideal of R
- $I^{-1} = (R : I) = \{x \in K | xI \subseteq R\}$ called the inverse of I.
- $I^{-1} \cong Hom_R(I, R)$, so it is also called the dual of I.
- ▶ I is invertible if IJ = R for some nonzero ideal of R, i.e., $II^{-1} = R$.
 - $(I : I) = \{x \in K | xI \subseteq I. (I : I) \cong End_R(I) = Hom_R(I, I).$ It is the largest overring of R where I is an ideal.

- R is an integral domain with quotient field K, I a nonzero ideal of R
- $I^{-1} = (R : I) = \{x \in K | xI \subseteq R\}$ called the inverse of I.
- $I^{-1} \cong Hom_R(I, R)$, so it is also called the dual of I.
- I is invertible if IJ = R for some nonzero ideal of R, i.e., $II^{-1} = R$.
- $(I:I) = \{x \in K | xI \subseteq I. (I:I) \cong End_R(I) = Hom_R(I,I). \text{ It is the largest overring of } R \text{ where } I \text{ is an ideal.}$

- R is an integral domain with quotient field K, I a nonzero ideal of R
- $I^{-1} = (R : I) = \{x \in K | xI \subseteq R\}$ called the inverse of I.
- $I^{-1} \cong Hom_R(I, R)$, so it is also called the dual of I.
- I is invertible if IJ = R for some nonzero ideal of R, i.e., $II^{-1} = R$.
- $(I : I) = \{x \in K | xI \subseteq I. (I : I) \cong End_R(I) = Hom_R(I, I).$ It is the largest overring of R where I is an ideal.

→ Huneke and Weigand proved that for an abstract hypersurface R of dimension one (that is, a ring of the form S/(f) where f is a prime element of the two-dimensional regular local ring S), and M and N R-modules, at least one of which has constant rank, if $M \otimes N$ is torsion-free, then either M or N is free. However, the hypothesis "hypersurface" cannot be changed to "complete intersection (that is a ring of the form $S/(f_1, \ldots, f_r)$, where S is a regular local ring and (f_1, \ldots, f_r) is a regular sequence in the maximal ideal)". They provided the following example.

Conference "Rings and Polynomials" in Gra

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigro 5 / 20

Let $R = k[[X^4, X^5, X^6]] \cong \frac{k[[Y, Z, W]]}{(YW - Z^2, Y^3 - W^2)})$, $I = (X^4, X^5)$ and $J = (X^4, X^6)$. Then R is a complete intersection, $I \otimes J$ is torsion-free, yet neither I nor J is free.

For ideals *I* and *J* of a domain *R*, they proved that a necessary condition for *I* ⊗ *J* to be torsion-free is that μ_R(*IJ*) = μ_R(*I*)μ_R(*J*). However, the condition on the number of generators is not sufficient for *I* ⊗ *J* to be torsion-free as it is shown by the following example.

Conference "Rings and Polynomials" in Gra

Example

Let $R = k[[X^4, X^5]]$, $I = (X^4, X^5)$ and $J = (X^8, X^{10})$. Then $\mu_R(IJ) = \mu_R(I)\mu_R(J)$, but $I \otimes J$ has torsion.

۲

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigro 6 / 20

Let $R = k[[X^4, X^5, X^6]] \cong \frac{k[[Y, Z, W]]}{(YW - Z^2, Y^3 - W^2)}$, $I = (X^4, X^5)$ and $J = (X^4, X^6)$. Then R is a complete intersection, $I \otimes J$ is torsion-free, yet neither I nor J is free.

۲

For ideals *I* and *J* of a domain *R*, they proved that a necessary condition for *I* ⊗ *J* to be torsion-free is that μ_R(*IJ*) = μ_R(*I*)μ_R(*J*). However, the condition on the number of generators is not sufficient for *I* ⊗ *J* to be torsion-free as it is shown by the following example.

Conference "Rings and Polynomials" in Gra

Example

Let $R = k[[X^4, X^5]]$, $I = (X^4, X^5)$ and $J = (X^8, X^{10})$. Then $\mu_R(IJ) = \mu_R(I)\mu_R(J)$, but $I \otimes J$ has torsion.

Let $R = k[[X^4, X^5, X^6]] \cong \frac{k[[Y, Z, W]]}{(YW - Z^2, Y^3 - W^2)}$, $I = (X^4, X^5)$ and $J = (X^4, X^6)$. Then R is a complete intersection, $I \otimes J$ is torsion-free, yet neither I nor J is free.

۲

For ideals *I* and *J* of a domain *R*, they proved that a necessary condition for *I* ⊗ *J* to be torsion-free is that µ_R(*IJ*) = µ_R(*I*)µ_R(*J*). However, the condition on the number of generators is not sufficient for *I* ⊗ *J* to be torsion-free as it is shown by the following example.

Conference "Rings and Polynomials" in Gra

Example

Let $R = k[[X^4, X^5]]$, $I = (X^4, X^5)$ and $J = (X^8, X^{10})$. Then $\mu_R(IJ) = \mu_R(I)\mu_R(J)$, but $I \otimes J$ has torsion.

Let $R = k[[X^4, X^5, X^6]] \cong \frac{k[[Y, Z, W]]}{(YW - Z^2, Y^3 - W^2)}$, $I = (X^4, X^5)$ and $J = (X^4, X^6)$. Then R is a complete intersection, $I \otimes J$ is torsion-free, yet neither I nor J is free.

۲

For ideals *I* and *J* of a domain *R*, they proved that a necessary condition for *I* ⊗ *J* to be torsion-free is that μ_R(*IJ*) = μ_R(*I*)μ_R(*J*). However, the condition on the number of generators is not sufficient for *I* ⊗ *J* to be torsion-free as it is shown by the following example.

Conference "Rings and Polynomials" in Gra

Example

Let $R = k[[X^4, X^5]]$, $I = (X^4, X^5)$ and $J = (X^8, X^{10})$. Then $\mu_R(IJ) = \mu_R(I)\mu_R(J)$, but $I \otimes J$ has torsion.

Let $R = k[[X^4, X^5, X^6]] \cong \frac{k[[Y, Z, W]]}{(YW - Z^2, Y^3 - W^2)}$, $I = (X^4, X^5)$ and $J = (X^4, X^6)$. Then R is a complete intersection, $I \otimes J$ is torsion-free, yet neither I nor J is free.

۲

For ideals *I* and *J* of a domain *R*, they proved that a necessary condition for *I* ⊗ *J* to be torsion-free is that μ_R(*IJ*) = μ_R(*I*)μ_R(*J*). However, the condition on the number of generators is not sufficient for *I* ⊗ *J* to be torsion-free as it is shown by the following example.

Conference "Rings and Polynomials" in Gra

6/20

Example

٥

Let
$$R = k[[X^4, X^5]]$$
, $I = (X^4, X^5)$ and $J = (X^8, X^{10})$. Then $\mu_R(IJ) = \mu_R(I)\mu_R(J)$, but $I \otimes J$ has torsion.

Finally, given a ring extension $R \subsetneq S$ and an S-module N.Then $S \otimes_R N$ has two S-module structures. The "left" structure coming from the first factor and the "right" structure coming from the S-module structure on N. They proved that these structures are not even isomorphic. They illustrated this phenomenon with the following example in which the ring extension is actually birational.

Example

Let $R = k[[X^4, X^5]] \subsetneq S = k[[X^4, X^5, X^6]]$, and let $J = X^4S + X^6S$. Then $J \otimes_R S \not\cong S \otimes_R J$ as "left" *S*-modules. Moreover, if $I = X^4S + X^5S$, then $I \otimes_S J \otimes_R S$ and $I \otimes_S S \otimes_R J$ are not isomorphic as *R*-modules.

 Finally, given a ring extension R ⊊ S and an S-module N. Then S ⊗_R N has two S-module structures. The "left" structure coming from the first factor and the "right" structure coming from the S-module structure on N. They proved that these structures are not even isomorphic. They illustrated this phenomenon with the following example in which the ring extension is actually birational.

Example

Let $R = k[[X^4, X^5]] \subsetneq S = k[[X^4, X^5, X^6]]$, and let $J = X^4S + X^6S$. Then $J \otimes_R S \not\cong S \otimes_R J$ as "left" *S*-modules. Moreover, if $I = X^4S + X^5S$, then $I \otimes_S J \otimes_R S$ and $I \otimes_S S \otimes_R J$ are not isomorphic as *R*-modules.

 Finally, given a ring extension R ⊊ S and an S-module N. Then S ⊗_R N has two S-module structures. The "left" structure coming from the first factor and the "right" structure coming from the S-module structure on N. They proved that these structures are not even isomorphic. They illustrated this phenomenon with the following example in which the ring extension is actually birational.

Example

Let $R = k[[X^4, X^5]] \subsetneq S = k[[X^4, X^5, X^6]]$, and let $J = X^4S + X^6S$. Then $J \otimes_R S \not\cong S \otimes_R J$ as "left" S-modules. Moreover, if $I = X^4S + X^5S$, then $I \otimes_S J \otimes_R S$ and $I \otimes_S S \otimes_R J$ are not isomorphic as R-modules.

Conference "Rings and Polynomials" in Gra

۲

- Conjecture 1.1 (Huneke-Wiegand conjecture). Let R be a Gorenstein local domain. Let M be a maximal Cohen-Macaulay R-module. If M ⊗_R Hom(M, R) is torsionfree, then M is free.
 - An ideal-theoretic version of the conjecture sustains that: (HW) If R is a one-dimensional Gorenstein local domain and I is a non-principal ideal of R, then $I \otimes_R Hom_R(I, R)$ has nonzero torsion.

- Conjecture 1.1 (Huneke-Wiegand conjecture). Let R be a Gorenstein local domain. Let M be a maximal Cohen-Macaulay R-module. If M ⊗_R Hom(M, R) is torsionfree, then M is free.
- An ideal-theoretic version of the conjecture sustains that: (HW) If R is a one-dimensional Gorenstein local domain and I is a non-principal ideal of R, then $I \otimes_R Hom_R(I, R)$ has nonzero torsion.

Let k be a field and X an indeterminate over k. Let

$$S = k[[X^2, X^3]]$$

$$R = k[[X^3, X^5, X^7]]$$

$$m = (X^3, X^5, X^7)$$

Clearly, R is a one-dimensional local Noetherian domain with maximal ideal m. Further, one can check that $m^{-1} = (m : m) = S$ and $\overline{R} = k[[X]]$, $m \otimes_R m^{-1}$ has nonzero torsion.

-

Example

Let k be a field, X an indeterminate over k, $R = k[[X^3, X^4]]$, and $I = (X^4, X^6)$. Then R is a one-dimensional local Noetherian divisorial domain (hence Gorenstein) with maximal ideal $m := (X^3, X^4)$, and $D := (I : I) = k[[X^2, X^4]]$ is local with maximal ideal $M := (X^2, X^3) = X^2 k[[X]]$. Moreover, $I \otimes_R I^{-1}$ has nonzero torsion Conference "Rings and Polynomials"

Let k be a field and X an indeterminate over k. Let

$$S = k[[X^2, X^3]]$$

$$R = k[[X^3, X^5, X^7]]$$

$$m = (X^3, X^5, X^7)$$

Clearly, R is a one-dimensional local Noetherian domain with maximal ideal m. Further, one can check that $m^{-1} = (m : m) = S$ and $\overline{R} = k[[X]]$, $m \otimes_R m^{-1}$ has nonzero torsion.

۲

Example

Let k be a field, X an indeterminate over k, $R = k[[X^3, X^4]]$, and $l = (X^4, X^6)$. Then R is a one-dimensional local Noetherian divisorial domain (hence Gorenstein) with maximal ideal $m := (X^3, X^4)$, and $D := (l : l) = k[[X^2, X^3]]$ is local with maximal ideal $M := (X^2, X^3) = X^2 k[[X]]$. Moreover, $l \otimes_R l^{-1}$ has nonzero torsion.

Let k be a field and X an indeterminate over k. Let

$$S = k[[X^2, X^3]]$$

$$R = k[[X^3, X^5, X^7]]$$

$$m = (X^3, X^5, X^7)$$

Clearly, R is a one-dimensional local Noetherian domain with maximal ideal m. Further, one can check that $m^{-1} = (m : m) = S$ and $\overline{R} = k[[X]]$, $m \otimes_R m^{-1}$ has nonzero torsion.

٥

Example

Let k be a field, X an indeterminate over k, $R = k[[X^3, X^4]]$, and $I = (X^4, X^6)$. Then R is a one-dimensional local Noetherian divisorial domain (hence Gorenstein) with maximal ideal $m := (X^3, X^4)$, and $D := (I : I) = k[[X^2, X^3]]$ is local with maximal ideal $M := (X^2, X^3) = X^2 k[[X]]$. Moreover, $I \otimes_R I^{-1}$ has nonzero torsion.

Let k be a field and X an indeterminate over k. Let

$$S = k[[X^2, X^3]]$$

$$R = k[[X^3, X^5, X^7]]$$

$$m = (X^3, X^5, X^7)$$

Clearly, R is a one-dimensional local Noetherian domain with maximal ideal m. Further, one can check that $m^{-1} = (m : m) = S$ and $\overline{R} = k[[X]]$, $m \otimes_R m^{-1}$ has nonzero torsion.

۲

Example

Let k be a field, X an indeterminate over k, $R = k[[X^3, X^4]]$, and $I = (X^4, X^6)$. Then R is a one-dimensional local Noetherian divisorial domain (hence Gorenstein) with maximal ideal $m := (X^3, X^4)$, and $D := (I : I) = k[[X^2, X^3]]$ is local with maximal ideal $M := (X^2, X^3) = X^2 k[[X]]$. Moreover, $I \otimes_R I^{-1}$ has nonzero torsion.

- ▶ Let *R* be an integral domain and let *M* be an *R*-module. Then the trace of *M* is the ideal of *R* generated by the set $\{f(m)|f \in Hom_R(M, R), m \in M\}.$
 - An ideal I of R is a trace ideal if I is the trace of some R-module, and R has the trace property (or is a TP-domain) if every ideal is a trace ideal. in [22], it was proved that the trace of I (as an R-module) is simply the product of I with its inverse I^{-1} , and R has the trace property if for every (nonzero) ideal I, either $II^{-1} = R$ or II^{-1} is a prime ideal of R.
 - T. Lucas introduced several types of trace properties including *TPP* (trace property for primary ideals) and *PRIP* (primary ideal *Q* such that *Q*⁻¹ is a ring implies *Q* is prime). He provided an example of a Noetherian *TP* domain which is not a *PRIP* domain.

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigre 10/20

- Let R be an integral domain and let M be an R-module. Then the trace of M is the ideal of R generated by the set {f(m)|f ∈ Hom_R(M, R), m ∈ M}.
- An ideal I of R is a trace ideal if I is the trace of some R-module, and R has the trace property (or is a TP-domain) if every ideal is a trace ideal. in [22], it was proved that the trace of I (as an R-module) is simply the product of I with its inverse I⁻¹, and R has the trace property if for every (nonzero) ideal I, either II⁻¹ = R or II⁻¹ is a prime ideal of R.
 - T. Lucas introduced several types of trace properties including *TPP* (trace property for primary ideals) and *PRIP* (primary ideal *Q* such that *Q*⁻¹ is a ring implies *Q* is prime). He provided an example of a Noetherian *TP* domain which is not a *PRIP* domain.

- Let R be an integral domain and let M be an R-module. Then the trace of M is the ideal of R generated by the set {f(m)|f ∈ Hom_R(M, R), m ∈ M}.
- An ideal *I* of *R* is a trace ideal if *I* is the trace of some *R*-module, and *R* has the trace property (or is a *TP*-domain) if every ideal is a trace ideal. in [22], it was proved that the trace of *I* (as an *R*-module) is simply the product of *I* with its inverse I^{-1} , and *R* has the trace property if for every (nonzero) ideal *I*, either $II^{-1} = R$ or II^{-1} is a prime ideal of *R*.
- T. Lucas introduced several types of trace properties including TPP (trace property for primary ideals) and PRIP (primary ideal Q such that Q⁻¹ is a ring implies Q is prime). He provided an example of a Noetherian TP domain which is not a PRIP domain.
Let $R = K[[X^3, X^4, X^5]]$. Then R is a Noetherian local domain with maximal ideal $M = (X^3, X^4, X^5)$ and $M^{-1} = K[[X]] = \overline{R}$. By [22, Theorem 3.5], R is a TP domain. However, the ideal $I = (X^3, X^4)$. is a proper *M*-primary ideal with $I^{-1} = K[[X]]$ is a ring but *I* is not prime. Hence R does not have PRIP.

Abdeslam MIMOUNI (Math.)

On the Stability of Certain Classes of Semigro 11 / 20

Let $R = K[[X^3, X^4, X^5]]$. Then R is a Noetherian local domain with maximal ideal $M = (X^3, X^4, X^5)$ and $M^{-1} = K[[X]] = \overline{R}$. By [22, Theorem 3.5], R is a TP domain. However, the ideal $I = (X^3, X^4)$. is a proper *M*-primary ideal with $I^{-1} = K[[X]]$ is a ring but *I* is not prime. Hence R does not have PRIP.

Conference "Rings and Polynomials" in Gra

۲

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigree 11 / 20

An ideal $J \subseteq I$ in a commutative ring R is a reduction of I if $JI^n = I^{n+1}$ for some positive integer n.

- The notion of reduction was introduced by Northcott and Rees [41] to contribute to the analytic theory of ideals in Noetherian local rings with infinite residue field. The core of *I*, denoted *core*(*I*), is the intersection of all reductions of *I*.
- The core was initially introduced by Sally [47] and appeared, among others, in the context of Briancon-Skoda's Theorem, which asserts that if *R* is regular with dimension *d*, then *core*(*I*) contains the integral closure of *I*^d [31, Chapter 13].

Conference "Rings and Polynomials" in Gra

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigro 12/20

- An ideal J ⊆ I in a commutative ring R is a reduction of I if JIⁿ = Iⁿ⁺¹ for some positive integer n.
- The notion of reduction was introduced by Northcott and Rees [41] to contribute to the analytic theory of ideals in Noetherian local rings with infinite residue field. The core of *I*, denoted *core(I)*, is the intersection of all reductions of *I*.
 - The core was initially introduced by Sally [47] and appeared, among others, in the context of Briancon-Skoda's Theorem, which asserts that if *R* is regular with dimension *d*, then *core*(*I*) contains the integral closure of *I*^d [31, Chapter 13].

- An ideal J ⊆ I in a commutative ring R is a reduction of I if JIⁿ = Iⁿ⁺¹ for some positive integer n.
- The notion of reduction was introduced by Northcott and Rees [41] to contribute to the analytic theory of ideals in Noetherian local rings with infinite residue field. The core of *I*, denoted *core*(*I*), is the intersection of all reductions of *I*.
- The core was initially introduced by Sally [47] and appeared, among others, in the context of Briancon-Skoda's Theorem, which asserts that if R is regular with dimension d, then core(1) contains the integral closure of 1^d [31, Chapter 13].

([46, Example 4.9]). Let k be an infinite field of positive characteristic p and $q \ge p$ be an integer not divisible by p. Consider the numerical semigroup ring $R = k[[X^{p^2}, X^{pq}, X^{pq+q}]]$, and let $I = \mathfrak{m}$ be the maximal ideal of R. Then R is a one-dimensional local Gorenstein domain, and $core(I) \supseteq (J^{n+1} : I^n)$ for any minimal reduction J of I.

• In Noetherian settings, the class of domains satisfying $core(I) = I^2I^{-1}$ for all nonzero ideals lies strictly between the two classes of *TP*-domains and one-dimensional domains; and the equivalence holds in a large class of Noetherian domains. The next example features a one-dimensional Noetherian local domain with maximal ideal *M* such that $core(M) = M^3 \subsetneq M^2 M^{-1}$.

Conference "Rings and Polynomials" in Gra

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigre 13/20

([46, Example 4.9]). Let k be an infinite field of positive characteristic p and $q \ge p$ be an integer not divisible by p. Consider the numerical semigroup ring $R = k[[X^{p^2}, X^{pq}, X^{pq+q}]]$, and let $I = \mathfrak{m}$ be the maximal ideal of R. Then R is a one-dimensional local Gorenstein domain, and $core(I) \supseteq (J^{n+1} : I^n)$ for any minimal reduction J of I.

٩

• In Noetherian settings, the class of domains satisfying $core(I) = I^2 I^{-1}$ for all nonzero ideals lies strictly between the two classes of *TP*-domains and one-dimensional domains; and the equivalence holds in a large class of Noetherian domains. The next example features a one-dimensional Noetherian local domain with maximal ideal *M* such that $core(M) = M^3 \subsetneq M^2 M^{-1}$.

Conference "Rings and Polynomials" in Gra

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigrc 13/20

([46, Example 4.9]). Let k be an infinite field of positive characteristic p and $q \ge p$ be an integer not divisible by p. Consider the numerical semigroup ring $R = k[[X^{p^2}, X^{pq}, X^{pq+q}]]$, and let $I = \mathfrak{m}$ be the maximal ideal of R. Then R is a one-dimensional local Gorenstein domain, and $core(I) \supseteq (J^{n+1} : I^n)$ for any minimal reduction J of I.

۲

▶ In Noetherian settings, the class of domains satisfying $core(I) = I^2 I^{-1}$ for all nonzero ideals lies strictly between the two classes of *TP*-domains and one-dimensional domains; and the equivalence holds in a large class of Noetherian domains. The next example features a one-dimensional Noetherian local domain with maximal ideal *M* such that $core(M) = M^3 \subsetneq M^2 M^{-1}$.

([33, Example 3.2]) Let k be a field and X an indeterminate over k. Let $R := k[[X^3, X^4]]$. Then, R is a one-dimensional Noetherian local domain with maximal ideal $M := (X^3, X^4)$ and hence $T := (M : M) = M^{-1} = k[[X^3, X^4, X^5]]$. Then $core(M) = M^3 \subsetneq M^2 = M^2T = M^2M^{-1}$.

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigro 14/20

([33, Example 3.2]) Let k be a field and X an indeterminate over k. Let $R := k[[X^3, X^4]]$. Then, R is a one-dimensional Noetherian local domain with maximal ideal $M := (X^3, X^4)$ and hence $T := (M : M) = M^{-1} = k[[X^3, X^4, X^5]]$. Then $core(M) = M^3 \subsetneq M^2 = M^2T = M^2M^{-1}$.

Conference "Rings and Polynomials" in Gra

An ideal I of R is called m-full if (mI : x) = I for some x ∈ m, and I is said to be weakly m-full ideal provided that (mI : m) ⊆ I), or equivalently, (mI : m) = I.

• Following is an example of weakly m-full ideals that are not m-full.

Example

([15, Example 2.7]) Let $R = \mathbb{C}[[X^4, X^5, X^6]]$. Then R is a one-dimensional complete intersection ring and $Q = (X^4)$ is a parameter ideal of R. Set $I = (Q : \mathfrak{m})$. Then I is weakly \mathfrak{m} -full but not \mathfrak{m} -full.

Conference "Rings and Polynomials" in Gra

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigree 15 / 20

- An ideal *I* of *R* is called m-full if (m*I* : x) = *I* for some x ∈ m, and *I* is said to be weakly m-full ideal provided that (m*I* : m) ⊆ *I*), or equivalently, (m*I* : m) = *I*.
- Following is an example of weakly m-full ideals that are not m-full.

([15, Example 2.7]) Let $R = \mathbb{C}[[X^4, X^5, X^6]]$. Then R is a one-dimensional complete intersection ring and $Q = (X^4)$ is a parameter ideal of R. Set $I = (Q : \mathfrak{m})$. Then I is weakly \mathfrak{m} -full but not \mathfrak{m} -full.

Conference "Rings and Polynomials" in Gra

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigre 15 / 20

- An ideal *I* of *R* is called m-full if (m*I* : x) = *I* for some x ∈ m, and *I* is said to be weakly m-full ideal provided that (m*I* : m) ⊆ *I*), or equivalently, (m*I* : m) = *I*.
- Following is an example of weakly m-full ideals that are not m-full.

([15, Example 2.7]) Let $R = \mathbb{C}[[X^4, X^5, X^6]]$. Then R is a one-dimensional complete intersection ring and $Q = (X^4)$ is a parameter ideal of R. Set $I = (Q : \mathfrak{m})$. Then I is weakly \mathfrak{m} -full but not \mathfrak{m} -full.

▶ In [30], it is proved that if (R, M) is a local Noetherian domain such that M^{-1} is local with principal maximal ideal $N \neq M$ and $\dim_{R/M}(M^{-1}/M) = 3$, then R has exactly three star operations.

Example

(2) ([30, Example 3.10]. Let k be a field, $R = k[[X^3, X^5, X^7]]$, and let M denote the maximal ideal of R. Then $M^{-1} = k[[X^2, X^3]] = R + RX^2 + RX^4$, $\dim_{R/M} M^{-1}/M = 3$, and $N^3 \subseteq M$ but $N^2 \not\subseteq M$, where N is the maximal ideal of M^{-1} . So R has exactly 4 star operations

• In [30], it is proved that if (R, M) is a local Noetherian domain such that M^{-1} is local with principal maximal ideal $N \neq M$ and $\dim_{R/M}(M^{-1}/M) = 3$, then R has exactly three star operations.

Example

(2) ([30, Example 3.10]. Let k be a field, $R = k[[X^3, X^5, X^7]]$, and let M denote the maximal ideal of R. Then $M^{-1} = k[[X^2, X^3]] = R + RX^2 + RX^4$, $\dim_{R/M} M^{-1}/M = 3$, and $N^3 \subseteq M$ but $N^2 \not\subseteq M$, where N is the maximal ideal of M^{-1} . So R has exactly 4 star operations

• In [30], it is proved that if (R, M) is a local Noetherian domain such that M^{-1} is local with principal maximal ideal $N \neq M$ and $\dim_{R/M}(M^{-1}/M) = 3$, then R has exactly three star operations.

Example

(2) ([30, Example 3.10]. Let k be a field, $R = k[[X^3, X^5, X^7]]$, and let M denote the maximal ideal of R. Then $M^{-1} = k[[X^2, X^3]] = R + RX^2 + RX^4$, $\dim_{R/M} M^{-1}/M = 3$, and $N^3 \subseteq M$ but $N^2 \not\subseteq M$, where N is the maximal ideal of M^{-1} . So R has exactly 4 star operations

Conference "Rings and Polynomials" in Gra

Let k be a field, X an indeterminate over k and $q \ge 3$ be an odd integer. Then $R = k[X^2, X^q]$ (resp. $R = k[[X^2, X^q]]$) is a stable (resp. strongly stable) domain.

Theorem

Let 1 be positive integers such that <math>p and q are relatively prime, $R = k[[X^p, X^q]]$ (resp. $R = k[X^p, X^q]$) and $M = (X^p, X^q)$. Then M is strongly stable if and only if p = 2 and q is odd.

۲

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigre 17 / 20

Let k be a field, X an indeterminate over k and $q \ge 3$ be an odd integer. Then $R = k[X^2, X^q]$ (resp. $R = k[[X^2, X^q]]$) is a stable (resp. strongly stable) domain.

۰

Theorem

Let 1 be positive integers such that <math>p and q are relatively prime, $R = k[[X^p, X^q]]$ (resp. $R = k[X^p, X^q]$) and $M = (X^p, X^q)$. Then M is strongly stable if and only if p = 2 and q is odd.

Conference "Rings and Polynomials" in Gra

۲

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigre 17 / 20

Let k be a field, X an indeterminate over k and $q \ge 3$ be an odd integer. Then $R = k[X^2, X^q]$ (resp. $R = k[[X^2, X^q]]$) is a stable (resp. strongly stable) domain.

۲

Theorem

Let 1 be positive integers such that <math>p and q are relatively prime, $R = k[[X^p, X^q]]$ (resp. $R = k[X^p, X^q]$) and $M = (X^p, X^q)$. Then M is strongly stable if and only if p = 2 and q is odd.

Let k be a field, X an indeterminate over k and $q \ge 3$ be an odd integer. Then $R = k[X^2, X^q]$ (resp. $R = k[[X^2, X^q]]$) is a stable (resp. strongly stable) domain.

۲

Theorem

Let 1 be positive integers such that p and q are relatively prime, $<math>R = k[[X^p, X^q]]$ (resp. $R = k[X^p, X^q]$) and $M = (X^p, X^q)$. Then M is strongly stable if and only if p = 2 and q is odd.

Conference "Rings and Polynomials" in Gra

Let k be a field, X an indeterminate over k, $p \ge 2$ be a positive integer, $R = k[[X^p, X^{p+1}]]$ (resp. $R = k[X^p, X^{p+1}]$) and $M = (X^p, X^{p+1})$. The following statement are equivalent: (1) R is strongly stable (resp. stable). (2) M is strongly stable.

(3) p = 2.

Theorem

Let k be a field, X an indeterminate over k, $p \ge 2$ a positive integer, $R = k[X^p, X^{p+1}, X^{p+2}]$ (resp. $R = k[[X^p, X^{p+1}, X^{p+2}]]$), and $M = (X^p, X^{p+1}, X^{p+2})$. The following statements are equivalent. (1) M is strongly stable. (2) n = 2 or n = 3

Abdeslam MIMOUNI (Math.)

Let k be a field, X an indeterminate over k, $p \ge 2$ be a positive integer, $R = k[[X^p, X^{p+1}]]$ (resp. $R = k[X^p, X^{p+1}]$) and $M = (X^p, X^{p+1})$. The following statement are equivalent: (1) R is strongly stable (resp. stable).

- (2) *M* is strongly stable.
- (3) p = 2.

۲

Theorem

Let k be a field, X an indeterminate over k, $p \ge 2$ a positive integer, $R = k[X^p, X^{p+1}, X^{p+2}]$ (resp. $R = k[[X^p, X^{p+1}, X^{p+2}]]$), and $M = (X^p, X^{p+1}, X^{p+2})$. The following statements are equivalent. (1) M is strongly stable. (2) p = 2 or p = 3

Abdeslam MIMOUNI (Math.)

Let k be a field, X an indeterminate over k, $p \ge 2$ be a positive integer, $R = k[[X^p, X^{p+1}]]$ (resp. $R = k[X^p, X^{p+1}]$) and $M = (X^p, X^{p+1})$. The following statement are equivalent: (1) R is strongly stable (resp. stable).

(2) *M* is strongly stable.

Abdeslam MIMOUNI (Math.)

(3)
$$p = 2$$
.

۲

Theorem

Let k be a field, X an indeterminate over k, $p \ge 2$ a positive integer, $R = k[X^p, X^{p+1}, X^{p+2}]$ (resp. $R = k[[X^p, X^{p+1}, X^{p+2}]]$), and $M = (X^p, X^{p+1}, X^{p+2})$. The following statements are equivalent. (1) M is strongly stable. (2) p = 2 or p = 3.

On the Stability of Certain Classes of Semigre 18 / 20

Let k be a field, X an indeterminate over k, $p \ge 2$ be a positive integer, $R = k[[X^p, X^{p+1}]]$ (resp. $R = k[X^p, X^{p+1}]$) and $M = (X^p, X^{p+1})$. The following statement are equivalent: (1) R is strongly stable (resp. stable). (2) M is strongly stable.

 $\binom{2}{2}$ in is strongly

(3)
$$p = 2$$
.

۲

Theorem

Let k be a field, X an indeterminate over k, $p \ge 2$ a positive integer, $R = k[X^p, X^{p+1}, X^{p+2}]$ (resp. $R = k[[X^p, X^{p+1}, X^{p+2}]]$), and $M = (X^p, X^{p+1}, X^{p+2})$. The following statements are equivalent. (1) M is strongly stable. (2) p = 2 or p = 3.

Let k be a field, X an indeterminate over k, $p \ge 2$ be a positive integer, $R = k[[X^p, X^{p+1}]]$ (resp. $R = k[X^p, X^{p+1}]$) and $M = (X^p, X^{p+1})$. The following statement are equivalent: (1) R is strongly stable (resp. stable). (2) M is strongly stable.

 $\binom{2}{2}$ in is strongly

(3)
$$p = 2$$
.

۲

Theorem

Let k be a field, X an indeterminate over k, $p \ge 2$ a positive integer, $R = k[X^p, X^{p+1}, X^{p+2}]$ (resp. $R = k[[X^p, X^{p+1}, X^{p+2}]]$), and $M = (X^p, X^{p+1}, X^{p+2})$. The following statements are equivalent. (1) M is strongly stable. (2) p = 2 or p = 3.

Let k be a field, X an indeterminate over k, $p \ge 2$ be a positive integer, $R = k[[X^p, X^{p+1}]]$ (resp. $R = k[X^p, X^{p+1}]$) and $M = (X^p, X^{p+1})$. The following statement are equivalent: (1) R is strongly stable (resp. stable). (2) M is strongly stable.

 $\binom{2}{2}$ in is strongly

(3)
$$p = 2$$
.

۲

Theorem

Let k be a field, X an indeterminate over k, $p \ge 2$ a positive integer, $R = k[X^p, X^{p+1}, X^{p+2}]$ (resp. $R = k[[X^p, X^{p+1}, X^{p+2}]]$), and $M = (X^p, X^{p+1}, X^{p+2})$. The following statements are equivalent. (1) M is strongly stable. (2) p = 2 or p = 3.

By SStable(R) we denote the set of all nonzero strongly stable ideals of R.

- *SStable*(*R*) is a multiplicative monoid.
- SS(R) = SStable(R)/P(R) is called the strongly stable class semigroup of R.
- *R* is completely integrally closed if and only if *SS*(*R*) is the trivial semigroup.

- By *SStable*(*R*) we denote the set of all nonzero strongly stable ideals of *R*.
- rightarrow SStable(R) is a multiplicative monoid.
 - SS(R) = SStable(R)/P(R) is called the strongly stable class semigroup of *R*.
 - *R* is completely integrally closed if and only if *SS*(*R*) is the trivial semigroup.

- By *SStable*(*R*) we denote the set of all nonzero strongly stable ideals of *R*.
- *SStable*(*R*) is a multiplicative monoid.
- ► SS(R) = SStable(R)/P(R) is called the strongly stable class semigroup of R.
 - *R* is completely integrally closed if and only if *SS*(*R*) is the trivial semigroup.

- By *SStable*(*R*) we denote the set of all nonzero strongly stable ideals of *R*.
- *SStable*(*R*) is a multiplicative monoid.
- SS(R) = SStable(R)/P(R) is called the strongly stable class semigroup of R.
- *R* is completely integrally closed if and only if SS(R) is the trivial semigroup.

- J. T. Arnold, Krull dimension in power series rings, Trans. Amer. Math. Soc. 177 (1973) 299-304.
- J. T. Arnold, Power series over PrÃ¹/₄fer domains, Pacific J. Math. 44 (1972) 1-11.
- Anderson DD, Anderson DF, Costa DL, Dobbs DE, Mott JL, Zafrullah M. Some characterizations of v-domains and related properties. Colloq Math 1989; 58: 1-9.
- Anderson D. F. Comparability of ideals and valuation overrings. Houston J Math 1979; 5: 451-463.
- Anderson D. F. Seminormal graded rings II. J Pure Appl Algebra 1982; 23: 221-226.
- Anderson D. F. When the dual of an ideal is a ring. Houston J Math 1983; 9: 325-332.
 - Anderson D. F, Chapman S, Inmanand F, Smith W. Factorization in $K[X^2, X^3]$. Arch Math 1993; 61: 521-528.

- Anderson D. F, Dobbs D. E. Pairs of rings with the same prime ideals. Canad J Math 1980; 32: 362-384.
- Anderson DF, Dobbs DE, Huckaba JA. On seminormal overrings. Comm Algebra 1982; 10: 1421-1448.
- Anderson DF, Jenkens S. Factorization in K[Xⁿ, Xⁿ⁺¹,..., X²ⁿ⁻¹].
 Comm Algebra 1995; 23: 2561-2576.
- Anderson D.F, Winner J. Factorization in K[[S]]. Factorization in integral domains (Iowa City, IA, 1996), 243-255, Lecture Notes in Pure and Appl. Math., 189, Dekker, New York, 1997.
- Bass H. On the ubiquity of Gorenstein rings. Math Z 1963; 82: 8-28.
- Bazzoni S, Salce L. Warfield domains. J Algebra 1996; 185: 836-868.

Bazzoni S. Divisorial domains. Forum Math 2000; 12: 397-419.

- O. Celikbas, S. Goto, R. Takahashi, and N. Taniguchi, On the ideal case of a conjecture of Huneke and Wiegand, Proc. Edinb. Math. Soc. (2) 62 (3) (2019) 847-859.
- O. Celikbas and T. Kobayashi, On a class of Burch ideals and a conjecture of Huneke and Wiegand, Collect. Math. 73 (2022) 221-236.
- O. Celikbas, K-I. Iima, A. Sadeghi, and R. Takahashi, On the ideal case of a conjecture of Auslander and Reiten, Bull. Sci. Math. 142 (2018) 94-107.
- O. Celikbas and R. Takahashi, Auslander-Reiten conjecture and Auslander-Reiten duality, J. Algebra 382 (2013) 100-114.
- H. Dao, T. Kobayashi, and R. Takahashi, Burch ideals and Burch rings, Algebra and Number Theory, 14 (2020) 2121-2150.
- Dobbs DE, Fedder R. Conducive integral domains. J Algebra 1984; 86: 494-510.

- Fontana M. Topologically defined classes of Commutative rings. Ann Mat Pura Appl 1980; 123: 331-355.
- M. Fontana, J. A. Huckaba and I. J. Papick, Domains satisfying the trace property. J Algebra 1987; 107: 169-182.
- Fontana M, Huckaba JA, Papick IJ, Roitman M. Prüfer domains and endomorphism rings of their ideals. J Algebra 1993; 157: 489-516.
- Gilmer R. Some finiteness conditions on the set of overrings of an integral domain. Proc Amer Math Soc 2003; 131: 2337-2346.
- Gilmer R. Multiplicative Ideal Theory. Marcl Dekker, New York, 1972.
- S. Goto, R. Takahashi, N. Taniguchi, and H. Le Truong, Huneke-Wiegand conjecture and change of rings, J. Algebra 422 (2015) 33-52.
- Heinzer W. Integral domains in which each non-zero ideal is divisorial. Matematika 1968; 15: 164-170.

- Heinzer W, Papick IJ. The radical trace property. J Algbra 1988; 112: 110-121.
- Heinzer W, Olberding B. Unique irredundant intersections of completely irreducible ideals. J Algebra 2005; 287: 432-448.
- Houston EG, Mimouni A, Park MH. Noetherian domains which admit only finitely many star operations. J Algebra 2012; 366: 78-93.
- C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006.

- C. Huneke and R. Wiegand, Tensor products of modules and the rigidity of Tor, Math. Ann. 299 (3) (1994) 449-476.
- S. Kabbaj and A. Mimouni, Core of ideals in one-dimensional Noetherian domains, J. Algebra, 555 (2020) 346-360.
- Kaplansky I. Commutative Rings, Rev. Ed. 1972.

- Kunz E. The value-semigroup of a one-dimensional Gorenstein ring. Proc Amer Math Soc 1970: 25: 748-751.
- J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971),649–685.
- T. G. Lucas, The Radical Trace Property and Primary Ideals, J. Algebra 164 (1996), 1093-1112.
 - Lucas TG, Mimouni A. Trace properties and integral domains, II. Comm Algebra 2012; 40: 497-513.
- Matlis E. Reflexive domains. J Algebra 1968; 8: 1-33.
 - A. Mimouni, Note on the divisoriality of domains of the form $k[[X^p, X^q]]$, $k[X^p, X^q]$, $k[[X^p, X^q, X^r]]$, and $k[X^p, X^q, X^r]$, Turkish J. Math. 40 (2016), no. 1, 38-42.
- D.G. Northcoot and D. Rees, Reductions of ideals in local rings, Proc. Camb. Philos. Soc. 50 (1954), 145-158.
- B. Olberding, On the classification of stable domains, J. Algebra 243 (2001), 177-197.
- B. Olberding, On the structure of stable domains, Comm. algebra, 30 (2) (2002), 877-895.
- B. Olberding, Duality, stability, 2-generated ideals and a decomposition of modules, Rend. Sem. Mat. Univ. Padova 106 (2001), 261-290.
- B. Olberding, Stability of Ideals and its Applications, ideal theoretic methods in commutative algebra, Lect. Notes Pure Appl. Math 220, Dekker (2010), 319-341.
- C. Polini and B. Ulrich, A formula for the core of an ideal, Math. Ann. 331 (2005), 487-503.
- D. Rees and J. Sally, General elements and joint reductions, Mich. Math. J. 35 (1988), 241-254.
- J. Sally and W. Vasconcelos, Stable rings and a problem of Bass, Bull. Amer. Math. Soc. 79 (1973), 574-576.

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigrc 19/20

- J. Sally and W. Vasconcelos, Stable rings, J. Pure Appl. Algebra 4 (1974), 319-336.
- R. G. Swan, On seminormality, J Algebra 1980; 67: 210-229.
- Zafrullah M. What v-coprimality can do for you. Multiplicative ideal theory in commutative algebra, 387-404, Springer, New York, 2006.

Thank you

Conference "Rings and Polynomials" in Gra

Abdeslam MIMOUNI (Math.) On the Stability of Certain Classes of Semigre 20 / 20