Largeness of g-coefficients of ¢g-binomial coefficients

Shashikant Mulay

Conference on Rings and Polynomials 2025
Graz, Austria

15'th of July 2025

Largeness of -coefficients of -binomial coef]



For a positive integer n, let g(z) = (1 —2)(1 —2?)--- (1 —2").
For 0 < r < n, the coefficient of 2" in g(z)~! and in g(z) resp. are:

p(?") and Qeven(r) - Qodd(r)
p(r) is the count of all partitions of n and
Q+«(r) counts the partitions of 7 in % number of distinct parts .

Euler's famous “Pentagonal number theorem” :

m . m(3m—1
(-1) n‘7"=—(2 ),

0 otherwise.

Qeven(r) _Qodd(r) = {
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First the simply elegant Hardy-Ramanujan (1918) asymptotic:

exp(my/2n/3)
P T

Now the fantastic Bruinier-Ono (2011) finite algebraic exact formula

pn) = S X Ploa)

And yet'good’ bounds for p(n) are still sought-after !! Here are the
currently sharpest bounds by Banerjee, Paule, Radu, Zeng (2023):
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For N € Z, and a := (ay,...,a,) € ZT, let,

Ag(n) == {(i1,...,im) € N | i1a1 + -+ + ippam = n}
Aa(N,n) = {(’il,...,im) € Aa(n) | W+ F i, < N}
Dy(N, n) = |A4(N, n)| (Sylvester's denumerant)

n _ 1
X DuNm "y = ey a1y

a; # a; = Dy(N, n) = no, of partitions of n in < N parts ay, .

oy G-

Special case: p(w; N,d) := D5 . 4)(N,w) i.e., the number of
partitions of w in at most IV parts and with each part at most d.
If 1 <w < min{N, d}, then p(w; N, d) = p(w).
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Gauss gave us the g-binomial coefficients: for integers 0 < k <n

(n) . (1 — q")(l — qn_l) - (1 _ qn—k—I—l)
kg (1-=g"1 =g ---(1-4¢"

polynomials in ¢ of degree (n — k)k ( the no. of k-dimensional subspaces
of I for a prime-power ¢). Most remarkably,

Nd

y N +d
E p(w;N,d)q¢" = ( J )
w=0 q

Note that p(w; N,d) = p(w;d, N) since (like the usual binomial

coefficients),
k g n—=k p
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1

e Changing ¢ to ¢~ ! and multiplying by ¢,

Nd
N +d N +d
-N.d Nd—w _ Nd _
> p(w; N, d)q q i), i),

w=0

and hence p(w; N,d) = p(Nd — w, N, d) (symmetry about Nd/2).
o Clearly, it suffices to restrict our attention to w < Nd/2.

@ Observe that for min{/N, d} < w < Nd/2, the values of p(w; N, d)
are not related to p(w) in any obvious way.
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(1991) G. Almkvist and G. Andrews, J. Numb. Theory, A
Hardy-Ramanujan Formula for Restricted Partitions :
Suppose d, w > N. Then, (as N — o0)

p(w; N, d) ~ 0(3—6a+a?) exp (_70‘)

where v := a(w; N, d) and 0 := 0(N,d) are defined as

_ 3(Nd — 2w)?

=~ NdNtdrD) M

0= (") \/de(N6+d+1) {1_111 (%ﬁ—mﬂ-
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@ Assume k is a field, char k either 0 or > N. An N-ary semi-invariant
(of weight w) is a polynomial f € k[z] :== k[z1,...... , ZN| such that
(i) f is symmetric in z1,..., 2y,
(i) f(z1+a,...,2xy +a) = f(z1,...,2n) forall a € k.
(i) ( f is homogeneous of degree w ).
N-ary semi-invariants form a subring of k[z] isomorphic to kN =1,
Semi-invariants of weight Nd/2 are called invariants.

e Definition: For N, d € Z, define H(w; N, d) to be the set of N-ary
semi-invariants of weight w and z;—degree < d for 1 <i < N.
If Nd is even , then let Inv(N,d) := H(Nd/2; N,d).

@ As k-linear spaces H(w; N, d) < k[z1,......
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o Examples: [],, ;- (2 — zj)*™ € H(nN(N —1); N, 2n(N —1)).
In fact, this is an invariant. >, -y (2 — zj)*™ € H(2n; N, 2n)
is not an invariant when N # 2n?.

o H(w,1,d), H(1,N,d), H2n+1,2,d) H(>Nd/2, N, d) are 0.
H(2n,2,d) is 1 dimensional.

@ Inv(N):=UgInv(N,d)is an N — 2 dimensional subring of k[z].
P. Gordon and D. Hilbert: Inv(N) is a finitely generated ring over k.

e Pairs (N, d) with Inv(N,d) # 0 were (finally) determined in 1985:
J. Dixmier: Quelques résultats et conjectures concernant les séries de
Poincaré des invariants des formes binaires.
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" Cayley and Syester. . N

e For this talk, sequence cg, ¢y, ..., ¢, is unimodal if ¢; < ¢;41 for
0 <i < n and strictly unimodal if ¢; < ¢;11 for 0 <i < n.

e In 1852-53, Cayley claimed (without proof) that for k = C, N > 2
and w < Nd/2, the vector space H(w; N, d) has dimension
p(w; N,d) — p(w — 1, N, d).
So, in particular, p(0, N,d),...... ,p(|Nd/2|, N,d) is unimodal.

@ Ultimately, Cayley’s claim was proved by Sylvester in his famous 1878
paper: Proof of the hitherto undemonstrated fundamental theorem of
invariants. Subsequently, Sylvester built (in several papers) what G.
Andrews calls “the modern theory of partitions”.

o Yet, p(w; N,d) as well as p(w; N, d) — p(w — 1, N, d) remain
un-understood !
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" Post Sylvester

@ More than 100 years after Sylvester came the influential UC Berkeley
Ph. D. thesis of K. M. O'Hara : (KOH) Unimodality of Gaussian
coefficients: a constructive proof, J. Combin. Theory Ser. A 53:1
(1990) D. Zeilberger calls it a “magnificent combinatorial proof of the
unimodality” Most of the recent work on p(w; N, d) takes inspiration
from KOH.

@ Unimodality re-proved with .S,,-representation-theoretic view in
(2010) I. Pak - E. Vallejo, SIAM J. Discrete Math. 24
Reductions of Young tableau bijections .

@ Strict unimodality: (2013) I. Pak - G. Panova: Comp. Rend.
p(w; N,d) — p(w —1,N,d) > 1 provided N, d > 8.
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e Improved unimodality (2014) Vivek Dhand: Discrete Math.
A combinatorial proof of strict unimodality for g-binomial coefficients
If 8 < min N, d, then p(w; N,d) — p(w — 1, N,d) > m for
2m < w < Nd/2. Simialr inequality with a lower bound on w that is
quadratic in m by F. Zanello in (2015).

e Exponential bound (2017) by |. Pak - G. Panova: J. Comb. Th. (A)
Bounds on certain classes of Kronecker and g-binomial coefficients
PP lower bound: Assume min{/N, d} > 8 and 0 < w < |Nd/2].
Let M := min{2w, N?, d*}. Then,

2\/M
250M /%"
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@ Since p(w; N,d) = p(w;d, N), without loss assume d > N.
@ Recall PP lower bound: If N > 8 and 0 < w < | Nd/2], then

QW

W—‘ N M = min{?w, N2}

p(w; N,d) —p(w —1,N,d) > {

e For 2w > N?, the PP lower bound is independent of (w, d) !
Also, the case 3 < N < 7 needs attention ! For example,

p(100;3,100) — p(99,3,100) = 17.

So, the quest for better bounds is still in its early stage !
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" New weight sensitive lower bOTTSHI

e Enter our lower bounds: SM (2021)
Enumerative Combinatorics and Applications,

Semi-Invariants of Binary Forms and Symmetrized Graph-Monomials

@ Virtue: for fixed IV, as w — oo our lower bounds — oo while PP
remains constant since min{2w, N?} stays fixed.

e Drawback: our bounds work only for a range (depending on d) of
values of w and for w in that range they are independent of d. In
particular, we fail to fully recover the previous results !
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Assume d > N >3 and w < Nd/2. Leta:a; < -+ < as41
be a seq. of pos. int. with s >1and a; + -+ asy1 = N
(so s < —1+ (V8N +1—1)/2). Define

2 _ 2 2
N —01—2"‘—as+1

wt(N,a) =
d(N,d,a) := al(d+a1—N—1)+wt(N’a)+{LJ

a

Then, for wt(N,a) +1 < w < §(N,d,a),

— wt(N —1
p(w; N,d) — p(w — 1, N, d) > (“’ v )
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For s € Z, and partition a : a; < --- < as+1 of N,
we have wt(N,a) < w(s, N), where

(s+1)(s+2) | N 5|

w(s,N) = 2 L+1_§J
(s+1)%(s+2)—2N(s+2) | N s
* 2 L+1_§J
+3(3+1)4+2(s+ 1)3 —3(1+4N)(s + 1)

24
+24N2 —2(146N)(s+1)
24
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Let N =15 < d, wt(a) := wt(15,a) and §(a) := 6(15,d, a).
Here PP lower bound is just 1.
a:3<4<8 wt(a) =68, 6(a) =3d+ 29 and 69 < w < 3d + 29
p(w;15,d) — p(w — 1;15,d) > w — 67.
a:2<3<4<6: wt(a) =280, d6(a) =2d+ 52 and 81 < w < 2d + 52

2 157
p(w; 15,d) — p(w — 1;15,d) > % - Tw + 3081,

a:1<2<3<4<5 wt(a) =85, d(a)=d+71and 86 <w < d+ 71

3 2
T 103;}311) I

p(w;15,d) — p(w — 1;15,d) > 5

|8
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Comparison of values of p(w;45,55) — p(w — 1;45,55) and lower bounds:

w 872 873 875
PP 759 770 792
SM 376992 435897 575757

value | 121307660637674779775810 | 123136493996785875153133 | 126854496384791530573137

Let f(d) := p(900;45,d) — p(899;45,d) (d > 75).
PP = 1121 a 4-digit number and SM = 10295472 an 8-digit number.

f(76) = 10695952533979786987999095 26 digits
f(78) = 13150261598814599756745952 26 digits .
f(80) = 15869693093392541521308815 26 digits
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@ Each SM lower bound in the second row of the table just shown
corresponds to the same a: 3 <4 <5 <6 <7 <8< 12.

@ The SM lower bound for w = 900, N =45 and d > 75
shown above, corresponds to

a:1<2<3<4<hH<6<T<8<.

e For (w, N) = (900, 45), as d ranges from 45 to 74,
the largest SM lower bound varies from 1 to 10295472
while the PP lower bound remains fixed.
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Given a partition a : a1 < -+ < asy1 of N in s + 1 distinct parts,
and wt(N,a) +1 <w < (N, d,a) we construct as many linearly
independent semi-invariants of weight w as our lower bound.

Assume N > 2 and either char k = 0 or char k > N
Recall symmetrization operator sym : k[z] — k[z]:

sym(P(z1,...,2Nn)) = Z P(zg(1ys e s Z(N))-

Then, sym maps k[zo — 21, 23 — 21, ... 2y — 21| to itself.

Theorem: [ € k[z] is a semi-invariant if and only if

f = sym(g) forsome g€ klzo — 21, 23— 21, ... 2N — 21].
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Multigraph: graph in which there may be 2 or more edges connecting a
pair of vertices. (IV,d)-multigraph: undirected loop-less multigraph on NV
vertices each of degree < d.

Se

40
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Let symm(N,d) be the set of all N x N zero diagonal symmetric
matrices with entries in N and such that each row / column sum is at
most d. A labeled (N, d)-multigraph T, is determined uniquely by its
adjacency matrix A(T") € symm(N,d).

For A € symm(N,d), define weight(A) to be half the sum of its entries.
If A:=[a;;], define mon(A) € klzo —21,...... ,ZN — 21 by

mon(A) = [li<icj<n (2 — 7).
Graph-monomial of T' (introduced by J. Petersen in 1890 s) is mon(A(T)).

sym(mon(A)) depends only on the permutation-conjugacy class of A
A € symm(N,d) has weight(A) = w iff sym(mon(A)) is in H(w; N, d);
weight(A) = Nd/2 iff sym(mon(A)) is in Inv(N, d).
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" Symmetrized graph-monomiEE NN

e mon(A) # 0 but sym(mon(A)) is very likely to be 0 !

@ e.g., out of 2274 isomorphisms classes of (6, 10)-regular multigraphs,
only 1137 have a nonzero symmetrized graph-monomial.

@ To the best of our knowledge, the only investigation of this issue is
(1992) G. Sabidussi:

Binary invariants and orientations of graphs, Discrete Math. 101.

It relates nonzero-ness of the symmetrization to orientation preserving
automorphisms of the multigraph. This relationship is not of much
practical use (as the author himself indicates !)
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" A criterion for nonssro symitEH SR

Suppose A = A(T") where T is an (N, d)-multigraph where N > 3.

A main results of SM (2021) ECA gives a usable sufficient condition on A
for sym(mon(A)) # 0.The gist of this condition is as follows:

If the vertices of I' can be partitioned into parts of sizes a1 < -+ < asy1
such that
(i) each a; x a; part has a nonzero symmetrized
graph-monomial and
(ii) the number of edges within each part is small compared to
the total number of edges,

then the symmetrization of the graph-monomial of I" is nonzero.
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@ The symmetrized graph-monomials of two non-isomorphic
multigraphs may be nonzero multiples of each other.
For example, this is indeed the case for multigraphs:

Y Ly

e In SM (2021), we do produce linearly independent symmetrized
graph-monomials.

Largeness of -coefficients of -binomial coefl 15'th of July 2025 25/1



" A sample of open questions S

@ Find a stronger sufficient condition on A that ensures
sym(mon(A)) # 0. SM (2021) gives a test for ‘stronger’ : namely,
recovery of Hermite's skew invariant !

@ What conditions on a collection of multigraphs ensure that their
symmetrized graph-monomials are linearly independent ?

@ Some more questions of this type in an appendix of MQS (2018);

Strong Fermion Interactions in Fractional Quantum Hall States.
e Find (w, d)-sensitive lower bounds for p(w; N, d) — p(w — 1; N,d); at

least when Nd is even and w = Nd/2. Fix (N, d) and determine
intervals of w where p(w; N, d) — p(w — 1; N, d) is monotonic.
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Recall our favourite polynomial g(z) = (1 — z)(1 — 2?)--- (1 — z").
Let ¢, (1) := coeff. of 2" in g(x), i.e., Qi(r) — Q5(r)
where x indicates that each part is at most n.

Euler's penagonal number theorem evaluates ¢, (r) for 0 < r < n.
What is the value of ¢, (r) forn+ 1 <r <n(n+1)/2 7 Easily,

n—1+4+7r

[ (r)] < < ) for all 7 € N.

Since g(z) = (—1)" - 2" +t1/2 . g(1/x),
wnlr) = (0w (2 ).
So, suffices to know ¢, (r) for n +1 <r <n(n+1)/4.
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Here is a formula for 1,,(1): given a positive integer k, define

ou(k) == S d, and au(k) = "”lik).

1<d<n, d|k

Then, 1, (r) is the sum:

2

11+2i0+FMmipm=r

an (1), (2)2 - agy (m)'™.

iligh iy
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@ Indeed 9, (1) = 0 if n =3mod4 and r =n(n+1)/4.
What are the (n, ) for which 1,,(r) =07

e What are the pairs (n, r) for which ,,(r) > 0 (resp. < 0) ?
e Fixing n, determine 7 with 1, () (resp. |1, (r)|) maximal.

@ As n — oo, does max{¢y,(r)} — |min{yy,(r)} — 0o ?
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