Primes and absolutely or non-absolutely irreducible elements in atomic domains

Sarah Nakato, Kabale University

(Joint work with S. Frisch, V. Fadinger, D. Smertnig, and D. Windisch)

Conference on Rings and Polynomials, TU Graz

July 17, 2025

Outline

• Absolute irreducibility

• Motivation

• New Results

Sarah Nakato, Kabale University

Absolute irreducibility

Definition 1

Let R be a commutative ring with identity.

- A non-zero non-unit $r \in R$ is said to be **irreducible** in R if whenever r = ab, then either a or b is a unit.
- ② An irreducible element r ∈ R is called absolutely irreducible if for all natural numbers n, every factorization of rⁿ is essentially the same as rⁿ = r · · · r, e.g., in

 $\operatorname{Int}(\mathbb{Z}) = \{ f \in \mathbb{Q}[x] \mid f(\mathbb{Z}) \subseteq \mathbb{Z} \},\$

 $\binom{x}{n} = \frac{x(x-1)(x-2)\cdots(x-n+1)}{n!}$ (Rissner, Windisch, 2021).

If r is irreducible but there exists a natural number n > 1 such that rⁿ has other factorizations essentially different from rⁿ = r ··· r, then r is called non-absolutely irreducible.

Examples of non-absolutely irreducible elements

In $\mathbb{Z}[\sqrt{-14}]$

Examples of non-absolutely irreducible elements

- See (N, 2020) for general constructions of non-absolutely irreducibles in Int(Z).
- Open Problem: A complete characterization of the absolutely irreducible elements of lnt(Z).

Motivation I

Recall: Let D be a domain with quotient field K. Then

 $\mathsf{Int}(D) = \{ f \in \mathcal{K}[x] \mid f(D) \subseteq D \}.$

Theorem 1 (Frisch, 2013, Frisch, N., Rissner, 2019) Let D be a Dedekind domain such that;

- D has infinitely many maximal ideals and
- 2 $|D/M| < \infty$ for each maximal ideal *M*.

Let $1 < m_1 \le m_2 \le \cdots \le m_n \in \mathbb{N}$. Then there exists a polynomial $H \in Int(D)$ with exactly *n* essentially different factorizations of lengths m_1, \ldots, m_n .

Motivation I

(Frisch, 2013, Frisch, N., Rissner, 2019) Given any finite multi-set of integers greater than one, say $\{2, 3, 5, 5\}$, there exists $H \in Int(D)$ such that

$$\begin{aligned} f &= h_1 \cdot h_2 \\ &= f_1 \cdot f_2 \cdot f_3 \\ &= g_1 \cdot g_2 \cdot g_3 \cdot g_4 \cdot g_5 \\ &= \ell_1 \cdot \ell_2 \cdot \ell_3 \cdot \ell_4 \cdot \ell_5. \end{aligned}$$

Such constructions require absolutely irreducible elements.

Sarah Nakato, Kabale University

Non-absolutely irreducible elements are necessary for studying patterns of factorizations. For instance factorization schemes.

Definition 2 (Definition 9.2.1, Geroldinger & Halter-Koch, 2006)

Let H be an atomic monoid, $m, r \in \mathbb{N}$ and

$$N = (n_{j,i})_{(j,i) \in [1,m] \times [1,r]} \in \mathbb{N}_0^{m \times r}$$

an (m, r)-matrix of non-negative integers. An element $c \in H$ is said to admit the factorization scheme N if there exist distinct irreducible elements a_1, \ldots, a_r such that

$$c=a_1^{n_{i,1}}\cdots a_r^{n_{i,r}}$$
 for all $i\in [1,m]$

Motivation III

Theorem 2 (Chapman and Krause, 2012)

Let $\mathcal{O}_{\mathcal{K}}$ be the ring of integers of a number field.

- An element r ∈ O_K is absolutely irreducible if and only if (r) is a minimal power of a prime ideal.
- ② For each nonzero nonunit $r \in O_K$, there exists a sequence $r_1 \cdots r_t$ of absolutely irreducible elements and a minimal $m \in \mathbb{N}$ such that

$$r^m = r_1 \cdots r_t$$

where this representation by atomic decay is unique up to ordering and associates for $r_1 \cdots r_t$.

Corollary 1 (Chapman and Krause, 2012)

 $\mathcal{O}_{\mathcal{K}}$ is a unique factorization domain if and only if every irreducible element of $\mathcal{O}_{\mathcal{K}}$ is absolutely irreducible.

New Results

Theorem 3 (Fadinger, Frisch, N., Smertnig, Windisch, 2025)

There exists a Dedekind domain that is not a unique factorization domain and such that all of its irreducible elements are absolutely irreducible but none of them prime.

Theorem 4 (Fadinger, Frisch, N., Smertnig, Windisch, 2025)

There exists a Dedekind domain that is not a unique factorization domain, contains a prime element, and such that all of its irreducibles elements are absolutely irreducible.

 (Fadinger, Frisch, N., Smertnig, Windisch, 2025) Atomic domains showing the following eight scenarios. + means existence and - means non-existence.

	Non-absolutely irreducible	Absolutely irreducible but not prime	Prime
$\operatorname{Int}(\mathbb{Z})[y]$	+	+	+
$Int(\mathcal{O}_{\mathcal{K}})$	+	+	-
$\mathbb{R} + \mathbb{C}[X]$	+	-	+
$\mathbb{R} + \mathbb{C}[[X]]$	+	-	-
Certain Dedekind	-	+	+
domains with class group \mathbb{Z}^n			
Certain Dedekind	-	+	-
domains with class group \mathbb{Z}^n			
UFDs	-	-	+
Fields	-	-	-

Sarah Nakato, Kabale University

References

- 1. Roswitha Rissner and Daniel Windisch. **Absolute** irreducibility of the binomial polynomials. *Journal of Algebra* 578 (2021).
- Sarah Nakato. Non-absolutely irreducible elements in the ring of integer-valued polynomials. Communications in Algebra 48.4 (2020).
- 3. Sophie Frisch, **A construction of integer-valued** polynomials with prescribed sets of lengths of factorizations. Monatsh. Math. 171.3-4 (2013).
- Sophie Frisch, Sarah Nakato, and Roswitha Rissner, Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields. J. Algebra 528 (2019).

References

- Sophie Frisch and Sarah Nakato, A graph-theoretic criterion for absolute irreducibility of integer-valued polynomials with square-free denominator. Communications in Algebra, (2020).
- Sophie Frisch, Sarah Nakato, and Roswitha Rissner, Split absolutely irreducible integer-valued polynomials over discrete valuation domains. J. Algebra 602 (2022).
- 7. Angermuller Gerhard, **Strong atoms in monadically krull monoids.** In Semigroup Forum, (2022).
- Moritz Hiebler, Sarah Nakato, and Roswitha Rissner, Characterizing absolutely irreducible integer-valued polynomials over discrete valuation domains. J. Algebra 633 (2023).

References

- Alfred Geroldinger and Franz Halter-Koch. Non-unique factorizations., Algebraic, combinatorial and analytic theory. (2006).
- 10. Paul-Jean Cahen and Jean-Luc Chabert. Integer-valued polynomials. American Mathematical Society, (1997).
- 11. Scott T. Chapman and Ulrich Krause. A closer look at non-unique factorization via atomic decay and strong atoms. *Progress in commutative algebra 2.* (2012).
- 12. Paul Baginski and Ross Kravitz. **A new characterization of** half-factorial Krull monoids. J. Algebra Appl.(2010).
- Victor Fadinger, Sophie Frisch, Sarah Nakato, Daniel Smertnig, and Daniel Windisch, Primes and absolutely or non-absolutely irreducible elements in atomic domains, arXiv:2411.01051v1, 2024.