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Absolute irreducibility

Definition 1
Let R be a commutative ring with identity.

1 A non-zero non-unit r ∈ R is said to be irreducible in R if
whenever r = ab, then either a or b is a unit.

2 An irreducible element r ∈ R is called absolutely irreducible
if for all natural numbers n, every factorization of rn is
essentially the same as rn = r · · · r , e.g., in

Int(Z) = {f ∈ Q[x ] | f (Z) ⊆ Z},(x
n
)

= x(x−1)(x−2)···(x−n+1)
n! (Rissner, Windisch, 2021).

3 If r is irreducible but there exists a natural number n > 1 such
that rn has other factorizations essentially different from
rn = r · · · r , then r is called non-absolutely irreducible.
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Examples of non-absolutely irreducible elements

In Z[
√

−14]

•

•3 •3 •3 •3

34
•

•
5 + 2

√
−14

•
5 − 2

√
−14
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Examples of non-absolutely irreducible elements

Consider f = x(x+2)(x2+3)
4 ∈ Int(Z).

•

•
x(x+2)(x2+3)

4
•

x(x+2)(x2+3)
4

f 2
•

•
x2(x2+3)

4

•
(x+2)2(x2+3)

4

• See (N, 2020) for
general constructions
of non-absolutely
irreducibles in Int(Z).

• Open Problem:
A complete
characterization of the
absolutely irreducible
elements of Int(Z).
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Motivation I

Recall: Let D be a domain with quotient field K . Then

Int(D) = {f ∈ K [x ] | f (D) ⊆ D}.

Theorem 1 (Frisch, 2013, Frisch, N., Rissner, 2019)
Let D be a Dedekind domain such that;

1 D has infinitely many maximal ideals and

2 |D/M| < ∞ for each maximal ideal M.

Let 1 < m1 ≤ m2 ≤ · · · ≤ mn ∈ N. Then there exists a polynomial
H ∈ Int(D) with exactly n essentially different factorizations of
lengths m1, . . . , mn.
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Motivation I

(Frisch, 2013, Frisch, N., Rissner, 2019) Given any finite multi-set
of integers greater than one, say {2, 3, 5, 5}, there exists
H ∈ Int(D) such that

H = h1 · h2

= f1 · f2 · f3
= g1 · g2 · g3 · g4 · g5

= ℓ1 · ℓ2 · ℓ3 · ℓ4 · ℓ5.

Such constructions require absolutely irreducible elements.

Sarah Nakato, Kabale University
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Motivation II

Non-absolutely irreducible elements are necessary for
studying patterns of factorizations. For instance factorization
schemes.
Definition 2 (Definition 9.2.1, Geroldinger & Halter-Koch,
2006)
Let H be an atomic monoid, m, r ∈ N and

N = (nj,i)(j,i)∈[1,m]×[1,r ] ∈ Nm×r
0

an (m, r)-matrix of non-negative integers. An element c ∈ H is
said to admit the factorization scheme N if there exist distinct
irreducible elements a1, . . . , ar such that

c = ani,1
1 · · · ani,r

r for all i ∈ [1, m]
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Motivation III

Theorem 2 (Chapman and Krause, 2012)
Let OK be the ring of integers of a number field.

1 An element r ∈ OK is absolutely irreducible if and only if (r)
is a minimal power of a prime ideal.

2 For each nonzero nonunit r ∈ OK , there exists a sequence
r1 · · · rt of absolutely irreducible elements and a minimal
m ∈ N such that

rm = r1 · · · rt

where this representation by atomic decay is unique up to
ordering and associates for r1 · · · rt .

Corollary 1 (Chapman and Krause, 2012)
OK is a unique factorization domain if and only if every irreducible
element of OK is absolutely irreducible.
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New Results

Theorem 3 (Fadinger, Frisch, N., Smertnig, Windisch, 2025)
There exists a Dedekind domain that is not a unique factorization
domain and such that all of its irreducible elements are absolutely
irreducible but none of them prime.

Theorem 4 (Fadinger, Frisch, N., Smertnig, Windisch, 2025)
There exists a Dedekind domain that is not a unique factorization
domain, contains a prime element, and such that all of its
irreducibles elements are absolutely irreducible.
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New Results

1 (Fadinger, Frisch, N., Smertnig, Windisch, 2025) Atomic
domains showing the following eight scenarios. + means
existence and - means non-existence.

Non-absolutely irreducible Absolutely irreducible Primebut not prime
Int(Z)[y ] + + +
Int(OK ) + + -
R + C[X ] + - +
R + C[[X ]] + - -

Certain Dedekind - + +
domains with class group Zn

Certain Dedekind - + -
domains with class group Zn

UFDs - - +
Fields - - -

Sarah Nakato, Kabale University
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