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Motivation

▶ In Computational Complexity Theory, you usually want
asymptotic information that is symbolic in n, e.g. n× n

matrix multiplication

▶ Sometimes you get intuition by computing small examples, e.g.
n = 2, 3, . . .

▶ Gröbner bases are well-suited to both of the above!

▶ Gröbner bases give theoretical insight as well as are the key
tool in e�ective methods
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Gröbner Bases are not a Panacea

▶ Obtaining a Gröbner basis can be tremendously expensive -
EXPSPACE-complete (Mayr and Meyer [1982])

▶ Hard to get even simple cases to �nish, e.g. 3× 3 determinant
orbit closure, tensor rank of 3× 3 multiplication

▶ Gröbner bases do not naturally preserve symmetry!
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Algebraic de Rham Cohomology
▶ There exists Gröbner basis methods to obtain Algebraic de

Rham Cohomology (Oaku and Takayama [1999, 2001])

▶ Requires computing Gröbner bases of D-ideals (ideals in the
Weyl algebra):

Wn := C
[{

Xi,
∂

∂Xi

}
i∈[n]

]/〈{
∂

∂Xi
· Xi − Xi · ∂

∂Xi
− 1

}
i∈[n]

〉
▶ We couldn't even obtain cohomology of 3× 3 determinant

hypersurface by hand, or on Macaulay2

Question
Develop a Gröbner basis theory which takes advantage if

variety corresponding to ideal has large symmetry group, or is

`determinantal'
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Hodge Algebra (Alg. with Straightening Law)

▶ If an algebra A is a pseudo-ASL (p-ASL for short) then:

▶ A ∼= F[X⃗]
/
J , and

▶ there is a monomial ideal Σ ⊆ F[X⃗] such that monomials not in
Σ form an F-linear basis for A; such monomials are called
standard monomials.

▶ If A is an ASL, the product of two standard monomials can be
straightened into a linear combinaton of `smaller' standard
monomials

▶ ASLs arise as coordinate rings of algebraic varieties, e.g.
Grassmanians, determinantal varieties, �ag varieties, Schubert
varieties
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Bideterminants (products of minors)
▶ Example of Hodge algebra - algebra of bideterminants

e.g. A = F[X1,1,X1,2,X2,1,X2,2, Y]
/
⟨X1,2X2,1 − X1,1X2,2 + Y⟩

Σ = ⟨X1,2X2,1⟩ ; (turns out A ∼= F[X1,1,X1,2,X2,1,X2,2])

▶ The above generalizes -

▶ poly ring with one variable for each minor of n×m matrix

▶ quotient by relations between minors

▶ gives ASL structure to the co-ordinate ring of n×m matrices

▶ standard monomials (Σ) correspond to standard bitableaux

▶ Advantage - smaller expressions for `determinant-like'
polynomials; bideterminants are re�ect symmetries coming
from the action (representation theory) of GLn
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Gröbner bases in p-ASLs

▶ Generally, in p-ASLs, you have smaller expressions for
polynomials that are adapted to the p-ASL basis

▶ Can we have a theory of Gröbner bases directly in p-ASLs?

▶ Trivially, any ASL A ∼= F[X⃗]
/
J , so for an any ideal I ⊆ A, we

can look Gröbner bases of the ideal I+ J ⊆ F[X⃗] � this
obscures symmetries

Question
Can we build a theory of Gröbner bases `native' to p-ASLs, i.e.

Gröbner bases without referencing ideal J?
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Challenges

▶ Basis of p-ASL A = F[X⃗]
/
J consists only of standard

monomials (monomials outside Σ), not all monomials in X⃗

▶ Product of standard monomials not necessarily standard,
might require straightening

▶ How do you de�ne term order?

▶ How would you de�ne division of monomials?

▶ What plays the role of monomial ideals?
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Term Order & Division
▶ A p-ASL term order on a p-ASL A is a total order ≺ on

standard monomials in A such that

▶ 1 ⪯ m

▶ If a ≺ b and c ⪯ d, and ac,bd ̸= 0, then

LM(ac) ≺ LM(bd)

▶ When does standard monomial m divide m ′:

▶ ordinary division in the polynomial ring, or

▶ m divides m ′ if there exists standard monomial f such that

LM(mf) = m ′
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Auxilliary Algebra of Leading Terms

▶ Given p-ASL A, algebra of leading terms w.r.t. A is another
p-ASL Alt on the same variables, and the same standard
monomials such that for standard monomials m,m ′

πlt(m) · πlt(m
′) =

no straightening︷︸︸︷
0 or πlt(LT(mm ′))︸ ︷︷ ︸

leading term of straightening

where πlt : A → Alt is the identity

Proposition

Every p-ASL A admits two algebras of leading terms � Agen where

the product is never 0, and, Adisc where product is 0 unless mm ′

is also a standard monomial.
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Definition of p-ASL Gröbner Basis

▶ Given p-ASL A, algebra of leading terms Alt, and an ideal
I ⊆ A, then G ⊆ A is a p-ASL Gröbner basis if:

▶ For all f ∈ I, there exists g ∈ G such that πlt(LM(g)) divides
πlt(LM(f)), or

▶ ⟨{πlt(LM(g)) : g ∈ G}⟩ = ⟨{πlt(LM(f)) : f ∈ I}⟩ (standard
monomial ideals in Alt)
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Our Main Result
Theorem (Grochow-N, 2025)

For any p-ASLs A with a p-ASL term order, we have a theory of

Gröbner bases native to A. Speci�cally:

ordinary Gröbner p-ASL Gröbner theory

Existence ✓ ✓
Reduced ✓ ✓
Universal ✓ ✓
Syzygies ✓ ✓
Algorithms ✓ ✓
Krull Dim. ✓ ✓

Corollary (Grochow-N, 2025)

The algebra of bideterminants has a p-ASL term order, thus we

have a Gröbner basis theory (called bd-Gröbner bases).



Our Main Result
Theorem (Grochow-N, 2025)

For any p-ASLs A with a p-ASL term order, we have a theory of

Gröbner bases native to A. Speci�cally:

ordinary Gröbner p-ASL Gröbner theory

Existence ✓ ✓
Reduced ✓ ✓
Universal ✓ ✓
Syzygies ✓ ✓
Algorithms ✓ ✓
Krull Dim. ✓ ✓

Corollary (Grochow-N, 2025)

The algebra of bideterminants has a p-ASL term order, thus we

have a Gröbner basis theory (called bd-Gröbner bases).



Our Main Result
Theorem (Grochow-N, 2025)

For any p-ASLs A with a p-ASL term order, we have a theory of

Gröbner bases native to A. Speci�cally:

ordinary Gröbner p-ASL Gröbner theory

Existence ✓ ✓
Reduced ✓ ✓
Universal ✓ ✓
Syzygies ✓ ✓
Algorithms ✓ ✓
Krull Dim. ✓ ✓

Corollary (Grochow-N, 2025)

The algebra of bideterminants has a p-ASL term order, thus we

have a Gröbner basis theory (called bd-Gröbner bases).



Applications to Bideterminant Algebra

▶ Universal p-ASL Gröbner basis is a p-ASL Gröbner basis for
any p-ASL term order and any algebra of leading terms

Theorem (Grochow-N, 2025)

For any r, the set of minors of size ⩾ r is a universal bd-Gröbner

basis for its ideal.

Takeaway

1. Given all our machinery, the proof is one-line

2. In the ordinary case, universal Gröbner basis are known

only for maximal minors and minors of size 2
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Future Work

▶ In upcoming work, we have already extended our Gröbner basis
theory to mildly non-commutative algebras, including the Weyl
algebra

▶ Get bd-Gröbner bases of annihilating D-ideals

▶ Compute Weyl closure, b-functions, etc. using bd-Gröbner
bases in the Weyl algebra

▶ See if we can develop a bipermanent Gröbner basis theory
(codimension of singular locus of permanent hypersurface is
unknown!)



Future Work

▶ In upcoming work, we have already extended our Gröbner basis
theory to mildly non-commutative algebras, including the Weyl
algebra

▶ Get bd-Gröbner bases of annihilating D-ideals

▶ Compute Weyl closure, b-functions, etc. using bd-Gröbner
bases in the Weyl algebra

▶ See if we can develop a bipermanent Gröbner basis theory
(codimension of singular locus of permanent hypersurface is
unknown!)



Future Work

▶ In upcoming work, we have already extended our Gröbner basis
theory to mildly non-commutative algebras, including the Weyl
algebra

▶ Get bd-Gröbner bases of annihilating D-ideals

▶ Compute Weyl closure, b-functions, etc. using bd-Gröbner
bases in the Weyl algebra

▶ See if we can develop a bipermanent Gröbner basis theory
(codimension of singular locus of permanent hypersurface is
unknown!)



Future Work

▶ In upcoming work, we have already extended our Gröbner basis
theory to mildly non-commutative algebras, including the Weyl
algebra

▶ Get bd-Gröbner bases of annihilating D-ideals

▶ Compute Weyl closure, b-functions, etc. using bd-Gröbner
bases in the Weyl algebra

▶ See if we can develop a bipermanent Gröbner basis theory
(codimension of singular locus of permanent hypersurface is
unknown!)



References
E. W. Mayr and A. R. Meyer. The complexity of the word problems for commutative semigroups and

polynomial ideals. Advances in mathematics, 46(3):305�329, 1982.

T. Oaku and N. Takayama. An algorithm for de Rham cohomology groups of the complement of an
a�ne variety via D-module computation. J. Pure Appl. Algebra, 139(1-3):201�233, 1999. doi:
10.1016/S0022-4049(99)00012-2.

T. Oaku and N. Takayama. Computing de Rham cohomology groups. In Proceedings of the 33rd
Symposium on Ring Theory and Representation Theory (Shimane, 2000), pages 19�22. Tokyo Univ.
Agric. Technol., Tokyo, 2001.


	Introduction
	References
	References

