Gröbner Bases Native to 'pseudo'-Hodge Algebras, with Application to the Algebra of Minors

Abhiram Natarajan

Joint work with Joshua Grochow (Univ. of Colorado, Boulder, USA)

► In Computational Complexity Theory, you usually want asymptotic information that is symbolic in n, e.g. n × n matrix multiplication

► In Computational Complexity Theory, you usually want asymptotic information that is symbolic in n, e.g. n × n matrix multiplication

Sometimes you get intuition by computing small examples, e.g. n = 2, 3, ...

► In Computational Complexity Theory, you usually want asymptotic information that is symbolic in n, e.g. n × n matrix multiplication

Sometimes you get intuition by computing small examples, e.g. n = 2, 3, ...

Gröbner bases are well-suited to both of the above!

► In Computational Complexity Theory, you usually want asymptotic information that is symbolic in n, e.g. n × n matrix multiplication

Sometimes you get intuition by computing small examples, e.g. n = 2, 3, ...

Gröbner bases are well-suited to both of the above!

 Gröbner bases give theoretical insight as well as are the key tool in effective methods Gröbner Bases are not a Panacea

 Obtaining a Gröbner basis can be tremendously expensive -EXPSPACE-complete (Mayr and Meyer [1982]) Gröbner Bases are not a Panacea

 Obtaining a Gröbner basis can be tremendously expensive -EXPSPACE-complete (Mayr and Meyer [1982])

► Hard to get even simple cases to finish, e.g. 3 × 3 determinant orbit closure, tensor rank of 3 × 3 multiplication Gröbner Bases are not a Panacea

 Obtaining a Gröbner basis can be tremendously expensive -EXPSPACE-complete (Mayr and Meyer [1982])

► Hard to get even simple cases to finish, e.g. 3 × 3 determinant orbit closure, tensor rank of 3 × 3 multiplication

Gröbner bases do not naturally preserve symmetry!

 There exists Gröbner basis methods to obtain Algebraic de Rham Cohomology (Oaku and Takayama [1999, 2001])

- ► There exists Gröbner basis methods to obtain Algebraic de Rham Cohomology (Oaku and Takayama [1999, 2001])
- Requires computing Gröbner bases of D-ideals (ideals in the Weyl algebra):

$$W_n := \mathbb{C}\left[\left\{X_i, \frac{\partial}{\partial X_i}\right\}_{i \in [n]}\right] \middle/ \left\langle \left\{\frac{\partial}{\partial X_i} \cdot X_i - X_i \cdot \frac{\partial}{\partial X_i} - 1\right\}_{i \in [n]}\right\rangle$$

- ► There exists Gröbner basis methods to obtain Algebraic de Rham Cohomology (Oaku and Takayama [1999, 2001])
- Requires computing Gröbner bases of D-ideals (ideals in the Weyl algebra):

$$W_{\mathfrak{n}} := \mathbb{C} \left[\left\{ X_{\mathfrak{i}}, \frac{\partial}{\partial X_{\mathfrak{i}}} \right\}_{\mathfrak{i} \in [\mathfrak{n}]} \right] \middle/ \left\langle \left\{ \frac{\partial}{\partial X_{\mathfrak{i}}} \cdot X_{\mathfrak{i}} - X_{\mathfrak{i}} \cdot \frac{\partial}{\partial X_{\mathfrak{i}}} - 1 \right\}_{\mathfrak{i} \in [\mathfrak{n}]} \right\rangle$$

We couldn't even obtain cohomology of 3 × 3 determinant hypersurface by hand, or on Macaulay2

- ► There exists Gröbner basis methods to obtain Algebraic de Rham Cohomology (Oaku and Takayama [1999, 2001])
- Requires computing Gröbner bases of D-ideals (ideals in the Weyl algebra):

$$W_{\mathfrak{n}} := \mathbb{C} \left[\left\{ X_{\mathfrak{i}}, \frac{\partial}{\partial X_{\mathfrak{i}}} \right\}_{\mathfrak{i} \in [\mathfrak{n}]} \right] \left/ \left\langle \left\{ \frac{\partial}{\partial X_{\mathfrak{i}}} \cdot X_{\mathfrak{i}} - X_{\mathfrak{i}} \cdot \frac{\partial}{\partial X_{\mathfrak{i}}} - 1 \right\}_{\mathfrak{i} \in [\mathfrak{n}]} \right\rangle \right.$$

We couldn't even obtain cohomology of 3 × 3 determinant hypersurface by hand, or on Macaulay2

Question

Develop a Gröbner basis theory which takes advantage if variety corresponding to ideal has large symmetry group, or is 'determinantal' Hodge Algebra (Alg. with Straightening Law) • If an algebra A is a pseudo-ASL (p-ASL for short) then: • $A \cong \mathbb{F}[\vec{X}] / I$, and

Hodge Algebra (Alg. with Straightening Law)

If an algebra A is a pseudo-ASL (p-ASL for short) then:

 \blacktriangleright A $\cong \mathbb{F}[\vec{X}] / I$, and

► there is a monomial ideal Σ ⊆ 𝔽[X] such that monomials not in Σ form an 𝔅-linear basis for A; such monomials are called standard monomials.

Hodge Algebra (Alg. with Straightening Law)

If an algebra A is a pseudo-ASL (p-ASL for short) then:

► $A \cong \mathbb{F}[\vec{X}] / I$, and

► there is a monomial ideal Σ ⊆ 𝔽[X] such that monomials not in Σ form an 𝔅-linear basis for A; such monomials are called standard monomials.

 If A is an ASL, the product of two standard monomials can be straightened into a linear combinaton of 'smaller' standard monomials

Hodge Algebra (Alg. with Straightening Law)

If an algebra A is a pseudo-ASL (p-ASL for short) then:

► $A \cong \mathbb{F}[\vec{X}] / I$, and

► there is a monomial ideal Σ ⊆ 𝔽[X] such that monomials not in Σ form an 𝔅-linear basis for A; such monomials are called standard monomials.

 If A is an ASL, the product of two standard monomials can be straightened into a linear combinaton of 'smaller' standard monomials

 ASLs arise as coordinate rings of algebraic varieties, e.g. Grassmanians, determinantal varieties, flag varieties, Schubert varieties

Bideterminants (products of minors)

► Example of Hodge algebra - algebra of bideterminants e.g. $A = \mathbb{F}[X_{1,1}, X_{1,2}, X_{2,1}, X_{2,2}, Y] / \langle X_{1,2}X_{2,1} - X_{1,1}X_{2,2} + Y \rangle$ $\Sigma = \langle X_{1,2}X_{2,1} \rangle$; (turns out $A \cong \mathbb{F}[X_{1,1}, X_{1,2}, X_{2,1}, X_{2,2}]$)

Bideterminants (products of minors)

► Example of Hodge algebra - algebra of bideterminants e.g. $A = \mathbb{F}[X_{1,1}, X_{1,2}, X_{2,1}, X_{2,2}, Y] / \langle X_{1,2}X_{2,1} - X_{1,1}X_{2,2} + Y \rangle$ $\Sigma = \langle X_{1,2}X_{2,1} \rangle$; (turns out $A \cong \mathbb{F}[X_{1,1}, X_{1,2}, X_{2,1}, X_{2,2}]$)

► The above generalizes -

 \blacktriangleright poly ring with one variable for each minor of $n \times m$ matrix

- quotient by relations between minors
- ▶ gives ASL structure to the co-ordinate ring of $n \times m$ matrices
- \blacktriangleright standard monomials (Σ) correspond to standard bitableaux

Bideterminants (products of minors)

 $\begin{aligned} & \blacktriangleright \text{ Example of Hodge algebra - algebra of bideterminants} \\ & \text{e.g. } A = \mathbb{F}[X_{1,1}, X_{1,2}, X_{2,1}, X_{2,2}, Y] \Big/ \langle X_{1,2}X_{2,1} - X_{1,1}X_{2,2} + Y \rangle \\ & \Sigma = \langle X_{1,2}X_{2,1} \rangle; \qquad (\text{turns out } A \cong \mathbb{F}[X_{1,1}, X_{1,2}, X_{2,1}, X_{2,2}]) \end{aligned}$

► The above generalizes -

 \blacktriangleright poly ring with one variable for each minor of $n \times m$ matrix

- quotient by relations between minors
- ▶ gives ASL structure to the co-ordinate ring of $n \times m$ matrices
- \blacktriangleright standard monomials (Σ) correspond to standard bitableaux
- Advantage smaller expressions for 'determinant-like' polynomials; bideterminants are reflect symmetries coming from the action (representation theory) of GL_n

 Generally, in p-ASLs, you have smaller expressions for polynomials that are adapted to the p-ASL basis

 Generally, in p-ASLs, you have smaller expressions for polynomials that are adapted to the p-ASL basis

Can we have a theory of Gröbner bases directly in p-ASLs?

 Generally, in p-ASLs, you have smaller expressions for polynomials that are adapted to the p-ASL basis

Can we have a theory of Gröbner bases directly in p-ASLs?

► Trivially, any ASL $A \cong \mathbb{F}[\vec{X}] / J$, so for an any ideal $I \subseteq A$, we can look Gröbner bases of the ideal $I + J \subseteq \mathbb{F}[\vec{X}]$ – this obscures symmetries

 Generally, in p-ASLs, you have smaller expressions for polynomials that are adapted to the p-ASL basis

Can we have a theory of Gröbner bases directly in p-ASLs?

► Trivially, any ASL $A \cong \mathbb{F}[\vec{X}] / J$, so for an any ideal $I \subseteq A$, we can look Gröbner bases of the ideal $I + J \subseteq \mathbb{F}[\vec{X}]$ – this obscures symmetries

Question

Can we build a theory of Gröbner bases 'native' to p-ASLs, i.e. Gröbner bases without referencing ideal J?

Challenges

▶ Basis of p-ASL $A = \mathbb{F}[\vec{X}] / J$ consists only of standard monomials (monomials outside Σ), not all monomials in \vec{X}

Challenges

► Basis of p-ASL $A = \mathbb{F}[\vec{X}] / J$ consists only of standard monomials (monomials outside Σ), not all monomials in \vec{X}

 Product of standard monomials not necessarily standard, might require straightening

Challenges

► Basis of p-ASL $A = \mathbb{F}[\vec{X}] / J$ consists only of standard monomials (monomials outside Σ), not all monomials in \vec{X}

 Product of standard monomials not necessarily standard, might require straightening

How do you define term order?

- How would you define division of monomials?
- What plays the role of monomial ideals?

Term Order & Division

► A p-ASL term order on a p-ASL A is a total order ~ on standard monomials in A such that

▶ If $a \prec b$ and $c \preceq d$, and ac, $bd \neq 0$, then

 $LM(ac) \prec LM(bd)$

Term Order & Division

► A p-ASL term order on a p-ASL A is a total order ~ on standard monomials in A such that

▶ $1 \preceq m$

▶ If $a \prec b$ and $c \preceq d$, and ac, $bd \neq 0$, then

 $LM(ac) \prec LM(bd)$

When does standard monomial m divide m':

ordinary division in the polynomial ring, or

 \blacktriangleright m divides m' if there exists standard monomial f such that

LM(mf) = m'

Auxilliary Algebra of Leading Terms

Given p-ASL A, algebra of leading terms w.r.t. A is another p-ASL A_{lt} on the same variables, and the same standard monomials such that for standard monomials m, m'

no straightening

 $\pi_{lt}(\mathfrak{m}) \cdot \pi_{lt}(\mathfrak{m}') =$

 $\tilde{}$

or

 $\pi_{lt}(LT(mm'))$

leading term of straightening

where $\pi_{lt}: A \rightarrow A_{lt}$ is the identity

Auxilliary Algebra of Leading Terms

Given p-ASL A, algebra of leading terms w.r.t. A is another p-ASL A_{lt} on the same variables, and the same standard monomials such that for standard monomials m, m'

no straightening

 $\pi_{lt}(m) \cdot \pi_{lt}(m') =$

or

 $\pi_{lt}(LT(mm'))$

leading term of straightening

where $\pi_{lt}: A \rightarrow A_{lt}$ is the identity

Proposition

Every p-ASL A admits two algebras of leading terms – A_{gen} where the product is never 0, and, A_{disc} where product is 0 unless mm' is also a standard monomial.

Definition of p-ASL Gröbner Basis

► Given p-ASL A, algebra of leading terms A_{lt}, and an ideal I ⊆ A, then G ⊆ A is a p-ASL Gröbner basis if:

▶ For all $f \in I$, there exists $g \in G$ such that $\pi_{lt}(LM(g))$ divides $\pi_{lt}(LM(f))$, or

Definition of p-ASL Gröbner Basis

► Given p-ASL A, algebra of leading terms A_{lt}, and an ideal I ⊆ A, then G ⊆ A is a p-ASL Gröbner basis if:

▶ For all $f \in I$, there exists $g \in G$ such that $\pi_{lt}(LM(g))$ divides $\pi_{lt}(LM(f))$, or

► \{\[\pi_{lt}(LM(g)): g ∈ G\]\} = \{\[\pi_{lt}(LM(f)): f ∈ I\]\}\] (standard monomial ideals in A_{lt})

Our Main Result

Theorem (Grochow-N, 2025)

For any p-ASLs A with a p-ASL term order, we have a theory of Gröbner bases native to A. Specifically:

Our Main Result

Theorem (Grochow-N, 2025)

For any p-ASLs A with a p-ASL term order, we have a theory of Gröbner bases native to A. Specifically:

11/20	ordinary Gröbner	p-ASL Gröbner theory
Existence		
Reduced	\checkmark	1
Universal	\checkmark	\checkmark
Syzygies	\checkmark	
Algorithms	\checkmark	\checkmark
Krull Dim.	\checkmark	\checkmark

Our Main Result

Theorem (Grochow-N, 2025)

For any p-ASLs A with a p-ASL term order, we have a theory of Gröbner bases native to A. Specifically:

120	ordinary Gröbner	p-ASL Gröbner theory
Existence	\checkmark	
Reduced	\checkmark	\checkmark
Universal	\checkmark	\checkmark
Syzygies	\checkmark	\checkmark
Algorithms	\checkmark	1
Krull Dim.	\checkmark	\checkmark

Corollary (Grochow-N, 2025)

The algebra of bideterminants has a p-ASL term order, thus we have a Gröbner basis theory (called bd-Gröbner bases).

Applications to Bideterminant Algebra

 Universal p-ASL Gröbner basis is a p-ASL Gröbner basis for any p-ASL term order and any algebra of leading terms Applications to Bideterminant Algebra

 Universal p-ASL Gröbner basis is a p-ASL Gröbner basis for any p-ASL term order and any algebra of leading terms

Theorem (Grochow-N, 2025)

For any r, the set of minors of size $\ge r$ is a universal bd-Gröbner basis for its ideal.

Applications to Bideterminant Algebra

 Universal p-ASL Gröbner basis is a p-ASL Gröbner basis for any p-ASL term order and any algebra of leading terms

Theorem (Grochow-N, 2025)

For any r, the set of minors of size $\ge r$ is a universal bd-Gröbner basis for its ideal.

Takeaway

1. Given all our machinery, the proof is one-line

2. In the ordinary case, universal Gröbner basis are known only for maximal minors and minors of size 2

 In upcoming work, we have already extended our Gröbner basis theory to mildly_non-commutative algebras, including the Weyl algebra

 In upcoming work, we have already extended our Gröbner basis theory to mildly_non-commutative algebras, including the Weyl algebra

Get bd-Gröbner bases of annihilating D-ideals

 In upcoming work, we have already extended our Gröbner basis theory to mildly_non-commutative algebras, including the Weyl algebra

Get bd-Gröbner bases of annihilating D-ideals

 Compute Weyl closure, b-functions, etc. using bd-Gröbner bases in the Weyl algebra

 In upcoming work, we have already extended our Gröbner basis theory to mildly_non-commutative algebras, including the Weyl algebra

Get bd-Gröbner bases of annihilating D-ideals

 Compute Weyl closure, b-functions, etc. using bd-Gröbner bases in the Weyl algebra

 See if we can develop a bipermanent Gröbner basis theory (codimension of singular locus of permanent hypersurface is unknown!)

- E. W. Mayr and A. R. Meyer. The complexity of the word problems for commutative semigroups and polynomial ideals. Advances in mathematics, 46(3):305-329, 1982.
- T. Oaku and N. Takayama. An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation. J. Pure Appl. Algebra, 139(1-3):201-233, 1999. doi: 10.1016/S0022-4049(99)00012-2.
- Ti. Oaku and N. Takayama. Computing de Rham cohomology groups. In Proceedings of the 33rd Symposium on Ring Theory and Representation Theory (Shimane, 2000), pages 19-22. Tokyo Univ. Agric. Technol., Tokyo, 2001.