Zahra Nazemian

Story

History

Invariant Subspace CHP

Discussion

Invariant subspaces

Zahra Nazemian University of Graz, Austria, FWF P36742

Conference on Rings and Polynomials, 2025

Zahra Nazemian

Introduction

- Story
- History
- Invariant Subspace
- CHF
- Discussion

• I would like to thank the organizers

Zahra Nazemian

Introduction

- Story
- History
- Invariant Subspace
- CHF
- Discussion

• I would like to thank the organizers and Daniel Smertnig, as my work is based on a project we wrote together two years ago,

Zahra Nazemian

Introduction

- Story
- History
- Invariant Subspaces
- СПР
- Discussion

 I would like to thank the organizers and Daniel Smertnig, as my work is based on a project we wrote together two years ago, and I believe in his mathematical vision.

Zahra Nazemian

Introduction

- Story
- History
- Invariant Subspace
- CHI
- Discussion

• This is joint work with H. Huang,

Zahra Nazemian

Introduction

- Story
- History
- Invariant Subspace
- CH
- Discussion

• This is joint work with H. Huang, Y. Wang, and

Zahra Nazemian

Introduction

- Story
- History
- Invariant Subspace
- CHI
- Discussion

• This is joint work with H. Huang, Y. Wang, and J. Zhang.

Zahra Nazemian

Introduction

- Story
- History
- Invariant Subspace
- CHP
- Discussion

- This is joint work with H. Huang, Y. Wang, and J. Zhang.
- Based on the paper: "Relative Cancellation", 2025.

Zahra Nazemian

Introduction

Story

History

Invariant Subspaces

CHF

Discussion

Let K be a field, and all K-algebras are assumed to be associative

Zahra Nazemian

Introduction

Story

History

Invariant Subspace

CHP

Discussion

Let K be a field, and all K-algebras are assumed to be associative with unit, but not in general commutative.

Zahra Nazemian

Introduction

Story

History

Invariant Subspaces

CHP

Discussion

Kraft and His Questions

Zahra Nazemian

Story

Our story begins with a paper by Kraft.

Kraft and His Questions

Zahra Nazemian

Story

History

Invariant Subspaces

Discussion

Our story begins with a paper by Kraft.

Kraft and His Questions

1996: "Challenging Problems on Affine n-Spaces"

Zahra Nazemian

Story

History

Invariant Subspaces CHP

Discussion

Kraft and His Questions

Our story begins with a paper by Kraft.

1996: "Challenging Problems on Affine n-Spaces"

• (CHP) Find an algebraic-geometric characterization of $\mathbb{C}[x_1, \ldots, x_n]$.

Zahra Nazemian

Story

History

Invariant Subspaces CHP

Discussion

Our story begins with a paper by Kraft.

Kraft and His Questions

1996: "Challenging Problems on Affine n-Spaces"

• (CHP) Find an algebraic-geometric characterization of $\mathbb{C}[x_1, \ldots, x_n]$.

• (ZCP) Is $\mathbb{C}[x_1, \ldots, x_n]$ cancellative?

Zahra Nazemian

Story

History

Invariant Subspaces CHP

Discussion

Kraft and His Questions

Our story begins with a paper by Kraft.

1996: "Challenging Problems on Affine n-Spaces"

• (CHP) Find an algebraic-geometric characterization of $\mathbb{C}[x_1, \ldots, x_n]$.

• (ZCP) Is $\mathbb{C}[x_1, \ldots, x_n]$ cancellative? Suppose $\mathbb{C}[x_1, \ldots, x_n, x]$

Zahra Nazemian

Story

History

Invariant Subspaces CHP

Discussion

Kraft and His Questions

Our story begins with a paper by Kraft.

1996: "Challenging Problems on Affine n-Spaces"

• (CHP) Find an algebraic-geometric characterization of $\mathbb{C}[x_1, \ldots, x_n]$.

• (ZCP) Is $\mathbb{C}[x_1, \ldots, x_n]$ cancellative? Suppose $\mathbb{C}[x_1, \ldots, x_n, x] \cong B[x]$.

Zahra Nazemian

Story

History

Invariant Subspaces CHP

Discussion

Kraft and His Questions

Our story begins with a paper by Kraft.

1996: "Challenging Problems on Affine n-Spaces"

• (CHP) Find an algebraic-geometric characterization of $\mathbb{C}[x_1, \ldots, x_n]$.

(ZCP) Is C[x₁,...,x_n] cancellative? Suppose C[x₁,...,x_n,x] ≅ B[x]. Is it true that C[x₁,...,x_n] ≅ B?

ZCP, case n = 1, 2, 3

Zahra Nazemian

Introductio

Story

History

Invariant Subspaces

CHP

Discussion

Zahra Nazemian

Story

History

Invariant Subspaces CHP

Discussion

ZCP, case n = 1, 2, 3

1972: "K[x] is cancellative."

1979, 1980, 1981: "K[x₁, x₂] is cancellative."

```
Invariant
subspaces
```

Zahra Nazemian

Story

History

```
Invariant
Subspaces
CHP
```

Discussion

```
ZCP, case n = 1, 2, 3
```

1972: "K[x] is cancellative."

```
1979, 1980, 1981: "K[x<sub>1</sub>, x<sub>2</sub>] is cancellative."
```

N. Gupta (2014):

```
Invariant
subspaces
```

Zahra Nazemian

Story

History

```
Invariant
Subspaces
CHP
```

Discussion

ZCP, case n = 1, 2, 3

1972: "K[x] is cancellative."

1979, 1980, 1981: "K[x₁, x₂] is cancellative."

N. Gupta (2014): If Char(K) is nonzero,

Zahra Nazemian

Story

History

Invariant Subspace CHP

Discussion

ZCP, case n = 1, 2, 3

1972: "K[x] is cancellative."

1979, 1980, 1981: "K[x₁, x₂] is cancellative."

N. Gupta (2014): If Char(K) is nonzero, then $K[x_1, x_2, x_3]$ is

```
Invariant
subspaces
```

Zahra Nazemian

Story

History

```
Invariant
Subspaces
CHP
```

Discussion

ZCP, case n = 1, 2, 3

1972: "K[x] is cancellative."

1979, 1980, 1981: "K[x₁, x₂] is cancellative."

N. Gupta (2014): If Char(K) is nonzero, then $K[x_1, x_2, x_3]$ is NOT cancellative!

CHP

Zahra Nazemian

Story

History

Invariant Subspaces

Discussion

Neena Gupta, The Zariski Cancellation Problem and Related Problems in Affine Algebraic Geometry, 2022

Goal

Zahra Nazemian

Introductio Story History

Invariant Subspaces CHP

Discussion

To give a characterization of the polynomial ring using the concept of invariant

subspaces.

Zahra Nazemian

Introduction

Story

History

Invariant Subspaces

СНР

Discussion

Invariant Subspaces

Zahra Nazemian

Introduct

History

Invariant Subspaces

CHP

Discussion

Invariant Subspaces

Let A be a K-algebra.

Zahra Nazemian

Introducti Story

History

Invariant Subspaces

Discussion

Invariant Subspaces

Let A be a K-algebra.

A subspace V of A is called *invariant* if

Zahra Nazemian

Let A be a K-algebra.

Invariant Subspaces

Invariant Subspaces

A subspace V of A is called *invariant* if $f(V) \subseteq V$ for every $f \in Aut_{\mathcal{K}}(A)$.

Zahra Nazemian

Introduction Story

History

Invariant Subspaces

Discussion

Invariant Subspaces

Let A be a K-algebra.

A subspace V of A is called *invariant* if $f(V) \subseteq V$ for every $f \in Aut_{\mathcal{K}}(A)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $Aut_{\mathcal{K}}(A)$ is the set of *K*-automorphisms of *A*.

Zahra Nazemian

Introduction Story

History

Invariant Subspaces CHP

Discussion

Invariant Subspaces

Let A be a K-algebra.

A subspace V of A is called *invariant* if $f(V) \subseteq V$ for every $f \in Aut_{\mathcal{K}}(A)$.

 $Aut_{\mathcal{K}}(A)$ is the set of *K*-automorphisms of *A*.

The subspaces 0, K, and A are called the *trivial invariant subspaces* of A.

Zahra Nazemian

Introductic Story History

Invariant Subspaces CHP

Discussion

Invariant Subspaces

Let A be a K-algebra.

A subspace V of A is called *invariant* if $f(V) \subseteq V$ for every $f \in Aut_{K}(A)$.

 $Aut_{\mathcal{K}}(A)$ is the set of *K*-automorphisms of *A*.

The subspaces 0, K, and A are called the *trivial invariant subspaces* of A.

I would like to thank Mesyan for suggesting the word 'trivial' here instead of 'proper'.

Notation

Zahra Nazemian

Introduction

Story

History

Invariant Subspaces

16-10

Zahra Nazemian

Story

History

Invariant Subspaces CHP

Discussion

Notation

K is algebraically closed and of characteristic zero.

Zahra Nazemian

Introductio

Story

History

Invariant Subspaces

Invariant subspaces of K[x]?

Zahra Nazemian

Introduction

Story

History

Invariant Subspaces

CHF

Discussion

Invariant subspaces of K[x]?

If $f \in Aut_{\mathcal{K}}(\mathcal{K}[x])$, then f(x) = ax + b, for some nonzero $a \in \mathcal{K}$ and $b \in \mathcal{K}$.

Zahra Nazemian

Introductio

History

Invariant Subspaces CHP

Discussion

Invariant subspaces of K[x]?

If $f \in Aut_{\mathcal{K}}(\mathcal{K}[x])$, then f(x) = ax + b, for some nonzero $a \in \mathcal{K}$ and $b \in \mathcal{K}$.

This implies that the nontrivial invariant subspaces of K[x] are in form

$$V_d:=<1,x,\cdots,x^d>$$
, for some $d\geq 1$,

Zahra Nazemian

Story

History

Invariant Subspaces CHP

Discussion

Invariant subspaces of K[x]?

If $f \in Aut_{\mathcal{K}}(\mathcal{K}[x])$, then f(x) = ax + b, for some nonzero $a \in \mathcal{K}$ and $b \in \mathcal{K}$.

This implies that the nontrivial invariant subspaces of K[x] are in form

 $V_d:=<1,x,\cdots,x^d>$, for some $d\geq 1$, the set of all polynomials of degree at

most d.

Zahra Nazemian

Introductio

Story

History

Invariant Subspaces CHP

Connected graded

Zahra Nazemian

Introduction Story History

Invariant Subspaces

CHP

Discussion

A K-algebra A is called *connected graded* if

Connected graded

Zahra Nazemian

Introduct Story

Invariant Subspaces

A K-algebra A is called connected graded if

Connected graded

$$A=\bigoplus_{i>0}A_i,$$

Discussion

Zahra Nazemian

Introduct Story

History

Invariant Subspaces

CHP

Discussion

Connected graded

A K-algebra A is called connected graded if

$$A=\bigoplus_{i>0}A_i,$$

where

Zahra Nazemian

Introduct Story

History

Invariant Subspaces

CHP

Discussion

Connected graded

A K-algebra A is called connected graded if

$$A=\bigoplus_{i\geq 0}A_i,$$

where

• each A_i is a subspace of A_i ,

Zahra Nazemian

Introduct Story

Invariant Subspaces

СНР

Discussion

Connected graded

A K-algebra A is called connected graded if

$$A=\bigoplus_{i\geq 0}A_i,$$

where

- each A_i is a subspace of A_i ,
- $A_iA_j \subseteq A_{i+j}$ for all i, j,

Zahra Nazemian

Introduct Story

Invariant Subspaces

CHP

Discussion

Connected graded

A K-algebra A is called connected graded if

$$A=\bigoplus_{i\geq 0}A_i,$$

where

- each A_i is a subspace of A_i ,
- $A_iA_j \subseteq A_{i+j}$ for all i, j,
- and $A_0 = K$.

Zahra Nazemian

Introducti Story History

Invariant Subspaces

CHP

Discussion

Connected graded

A K-algebra A is called connected graded if

$$A=\bigoplus_{i\geq 0}A_i,$$

where

- each A_i is a subspace of A_i ,
- $A_iA_j \subseteq A_{i+j}$ for all i, j,
- and $A_0 = K$.

Example: $K[x_1, \cdots, x_n]$

Zahra Nazemian

Story

Invariant Subspaces

CHP

Discussion

Characterization of Polynomial Rings (Huang, Nazemian, Wang and Zhang 2025)

A K-algebra $A \neq K$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Invariant subspaces

Zahra Nazemian

Story

Invariant Subspaces

CHP

```
Discussion
```

Characterization of Polynomial Rings (Huang, Nazemian, Wang and Zhang 2025)

A K-algebra $A \neq K$ is isomorphic to $K[x_1, \ldots, x_n]$, with $n \ge 2$, if and only if the

followings hold:

Story

History

Invariant Subspaces

CHP

Discussion

Characterization of Polynomial Rings (Huang, Nazemian, Wang and Zhang 2025)

A K-algebra $A \neq K$ is isomorphic to $K[x_1, \ldots, x_n]$, with $n \geq 2$, if and only if the

followings hold:

(i) A has no nontrivial invariant subspaces.

Zahra Nazemian

Story History

Invariant Subspaces

CHP

Discussion

Characterization of Polynomial Rings (Huang, Nazemian, Wang and Zhang 2025)

A K-algebra $A \neq K$ is isomorphic to $K[x_1, \ldots, x_n]$, with $n \geq 2$, if and only if the

followings hold:

(i) A has no nontrivial invariant subspaces.

(ii) A is a finitely generated connected graded algebra.

Zahra Nazemian

Introducti Story History

Invariant Subspaces

CHP

Discussion

Characterization of Polynomial Rings (Huang, Nazemian, Wang and Zhang 2025)

A K-algebra $A \neq K$ is isomorphic to $K[x_1, \ldots, x_n]$, with $n \ge 2$, if and only if the

followings hold:

(i) A has no nontrivial invariant subspaces.

(ii) A is a finitely generated connected graded algebra.

Remark: Weyl algebras have Condition (i)

Zahra Nazemian

Introduction Story History

Invariant Subspaces

CHP

Discussion

Characterization of Polynomial Rings (Huang, Nazemian, Wang and Zhang 2025)

A K-algebra $A \neq K$ is isomorphic to $K[x_1, \ldots, x_n]$, with $n \ge 2$, if and only if the

followings hold:

(i) A has no nontrivial invariant subspaces.

(ii) A is a finitely generated connected graded algebra.

Remark: Weyl algebras have Condition (i)

Conjecture: If A is commutative, Condition (ii) is superfluous.

Russell cube

Zahra Nazemian

Story

Discussion

 $A = \mathbb{C}[X, Y, Z, T]/(X^2Y + X + Z^2 + T^3)$

Zahra Nazemian

Introducti Story

History

Invariant Subspaces

CHF

```
Discussion
```

$A = \mathbb{C}[X, Y, Z, T]/(X^2Y + X + Z^2 + T^3)$

• It is regular 3-dimensional.

Russell cube

Russell cube

Zahra Nazemian

Introducti Story

- History
- Invariant Subspaces
- CHP
- Discussion

$A = \mathbb{C}[X, Y, Z, T]/(X^2Y + X + Z^2 + T^3)$

• It is regular 3-dimensional. We know these days it is not isomorphic to a polynomial ring.

Russell cube

Zahra Nazemian

Introduction Story

- History
- Invariant Subspaces
- CHP
- Discussion

$A = \mathbb{C}[X, Y, Z, T] / (X^2 Y + X + Z^2 + T^3)$

- It is regular 3-dimensional. We know these days it is not isomorphic to a polynomial ring.
- If one shows that A[x] is isomorphic to the polynomial ring with four variables, she/he has solved ZCP.

Russell cube

Zahra Nazemian

Introduction Story

Discussion

- $A = \mathbb{C}[X, Y, Z, T]/(X^2Y + X + Z^2 + T^3)$
 - It is regular 3-dimensional. We know these days it is not isomorphic to a polynomial ring.
 - If one shows that A[x] is isomorphic to the polynomial ring with four variables, she/he has solved ZCP.
 - Can A[x] have nontrivial invariant subspaces?

Zahra Nazemian

- Introductio
- History
- Invariant Subspaces
- CHF
- Discussion

Localization and Leavitt Path Algebras

• Local rings have nontrivial invariant subspaces.

Zahra Nazemian

- Introductio Story
- History
- Invariant Subspace
- CHP
- Discussion

Localization and Leavitt Path Algebras

- Local rings have nontrivial invariant subspaces.
- The ring $K[x, x^{-1}] = \bigoplus_{i \in \mathbb{Z}} A_i$, where $A_0 = K$, is \mathbb{Z} -graded, and $\bigoplus_{i \in \mathbb{Z}, i \neq 0} A_i$ is an invariant subspace.

Zahra Nazemian

- Introduction Story
- History
- Invariant Subspace
- CHP
- Discussion

Localization and Leavitt Path Algebras

- Local rings have nontrivial invariant subspaces.
- The ring K[x, x⁻¹] = ⊕_{i∈Z} A_i, where A₀ = K, is Z-graded, and ⊕_{i∈Z, i≠0} A_i is an invariant subspace.
 Note that K[x, x⁻¹] is Leavitt path algebra, recall Mesyan's talk.

Zahra Nazemian

- Introduction Story
- History
- Invariant Subspaces
- CHP
- Discussion

Localization and Leavitt Path Algebras

- Local rings have nontrivial invariant subspaces.
- The ring K[x, x⁻¹] = ⊕_{i∈Z} A_i, where A₀ = K, is Z-graded, and ⊕_{i∈Z, i≠0} A_i is an invariant subspace.
 Note that K[x, x⁻¹] is Leavitt path algebra, recall Mesyan's talk.
- Which Leavitt path algebras have no nontrivial invariant subspaces?

Zahra Nazemian

Introduction

Story

History

Invariant Subspaces

CHP

Discussion

?