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Preliminaries

Let D be an integrally closed domain and M be a torsion-free D-module.

Theorem 1

There exists a field K such that D is
embedded into K , namely

K =
{ r
s
| r ∈ D, s ∈ D\{0}

}
,

the set of all equivalence classes in
D × D\{0} built by the relation
(r1, s1) ∼ (r2, s2) iff s2r1 = s1r2,
i.e. r1

s1
= r2

s2
iff s2r1 = s1r2.

(K is called quotient field/field of

quotients/field of fractions.)

Theorem 2

There exists a K -vector space V such
that M is embedded into V , namely

V =
{m
s
| m ∈ M, s ∈ D\{0}

}
,

the set of all equivalence classes in
M × D\{0} built by the relation
(m1, s1) ∼ (m2, s2) iff s2m1 = s1m2,
i.e. m1

s1
= m2

s2
iff s2m1 = s1m2.

Since K ·M = V , denote V as KM.
(KM is called quotient module/
module of quotients/module of

fractions).

Mu’amar Musa Nurwigantara Three Definitions of Krull Modules muamar.musa.n@ugm.ac.id 3 / 13



Preliminaries

Let D be an integrally closed domain and M be a torsion-free D-module.

Theorem 1

There exists a field K such that D is
embedded into K , namely

K =
{ r
s
| r ∈ D, s ∈ D\{0}

}
,

the set of all equivalence classes in
D × D\{0} built by the relation
(r1, s1) ∼ (r2, s2) iff s2r1 = s1r2,
i.e. r1

s1
= r2

s2
iff s2r1 = s1r2.

(K is called quotient field/field of

quotients/field of fractions.)

Theorem 2

There exists a K -vector space V such
that M is embedded into V , namely

V =
{m
s
| m ∈ M, s ∈ D\{0}

}
,

the set of all equivalence classes in
M × D\{0} built by the relation
(m1, s1) ∼ (m2, s2) iff s2m1 = s1m2,
i.e. m1

s1
= m2

s2
iff s2m1 = s1m2.

Since K ·M = V , denote V as KM.
(KM is called quotient module/
module of quotients/module of

fractions).

Mu’amar Musa Nurwigantara Three Definitions of Krull Modules muamar.musa.n@ugm.ac.id 3 / 13



Preliminaries

To bring into modules, we need
module version of these:

For all I ⊆ K , let
I−1 := {k ∈ K | kI ⊆ D}, then
I−1I ⊆ D.

I is invertible if I−1I = D.

Let Iv := (I−1)−1, then I ⊆ Iv .

I is v-ideal if I = Iv .

I is v-invertible if (I−1I )v = D.

Definitions

For all N ⊆ KM, let
N− := {k ∈ K | kN ⊆ M}, then
N−N ⊆ M.1

N is invertible if N−N = M.1

For all I ⊆ K , let
I+ := {x ∈ KM | Ix ⊆ M}, then
II+ ⊆ M.2

Let Nv := (N−)+, then N ⊆ Nv .2

N is v-submodule2 if N = Nv .

N is v-invertible2 if (N−N)v = M.
1Naoum, A. G., Al-Alwan, F. H., 1996, Dedekind Modules, Communications in Algebra, Vol. 24, No. 2, p. 397-412
2Wijayanti, I. E., Marubayashi, H., Ernanto, I., Sutopo, 2020, Finitely Generated Torsion-free Modules over Integrally Closed
Domains, Communications in Algebra, Vol. 48, Issue 8, p. 3597-3607
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Krull Modules in the sense of Wijayanti

Definition 3

D is Krull3 if

1 every v -ideals of D are
v -invertible (i.e. D is cic),

2 D satisfies ascending chain
condition on v -ideals.

Definition 4

Let M be finitely-generated. M is
Krull4 if

1 every v -submodules N of M
satisfying KN = KM are
v -invertible,

2 M satisfies acc on v -submodules
Ni where KNi = KM.

Why KN = KM?

(∀I E D)KI = KD
⇔ field of fractions of I = field of fractions of D

Take those N with the same module of fractions as M
⇔ KN = KM

3
Gilmer, R., 1992, Multiplicative Ideal Theory, Queen’s Papers in Pure and Applied Mathematics, Vol. 90.

4
Wijayanti, I. E., Marubayashi, H., Ernanto, I., Sutopo, 2022, Arithmetic Modules over Generalized Dedekind Domains,

Journal of Algebra and Its Applications, Vol. 21, No. 03, 2250045.
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Krull Modules in the sense of Wijayanti

Definition 4

Let M be finitely-generated. M is
Krull4 if

1 every v -submodule N of M
satisfying KN = KM is
v -invertible,

2 M satisfies acc on v -submodules
Ni where KNi = KM.

We need to expand this to

non-finitely-generated modules.

Problem: All v -submodules are
v -invertible ; completely integrally
closed

e.g. M =
{ a

2n

∣∣∣ a ∈ Z, n ∈ N0

}
as a

Z-module.

It’ll be cic if M− = D.

Definition 5

M is Krull5 if

1 M is completely integrally closed modules (i.e. M− = D and every
v -submodules N of M satisfying KN = KM are v -invertible),

2 M satisfies acc on v -submodules Ni where KNi = KM.

4
Wijayanti, I. E., Marubayashi, H., Ernanto, I., Sutopo, 2022, Arithmetic Modules over Generalized Dedekind Domains,

Journal of Algebra and Its Applications, Vol. 21, No. 03, 2250045.
5

Nurwigantara, M. M., Wijayanti, I. E., Marubayashi, H., Wahyuni, S., Krull Modules and Completely Integrally Closed
Modules, Journal of Algebra and Its Applications, Vol.21, No. 1, 2350038.
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Strongly Krull Modules

Let’s go back to the KN = KM issue.
Look at how Naoum and Al-Alwan defined Dedekind module as an
analogy of Dedekind domain.

Definition 6

D is Dedekind3 if every non-zero ideals

of D are invertible.

Definition 7

M is Dedekind1 if every non-zero sub-

modules of M are invertible.

Naoum and Al-Alwan doesn’t need KN = KM.

Many examples of M whose submodules N do not satisfy KN = KM,
e.g. M = R ⊕ R ⊕ R, N = R ⊕ {0} ⊕ R

What if we generalize Krull domain in this way?

3
Gilmer, R., 1992, Multiplicative Ideal Theory, Queen’s Papers in Pure and Applied Mathematics, Vol. 90.

1
Naoum, A. G., Al-Alwan, F. H., 1996, Dedekind Modules, Communications in Algebra, Vol. 24, No. 2, p. 397-412.
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Strongly Krull Modules

Definition 5

M is Krull5 if

1 M is completely integrally closed
modules (i.e. M− = D and every
v -submodules N of M satisfying
KN = KM are v -invertible),

2 M satisfies acc on v -submodules
Ni where KNi = KM.

Definition 8

M is strongly Krull8 if

1 M is strongly completely
integrally closed modules (i.e.
M− = D and every v -submodules
N of M are v -invertible),

2 M satisfies acc on v -submodules.

Note: This is similar to the one by Kim and Kim (2013)7, but in Kim’s case, they

only see multiplication modules case.

Example 9

Z× Z[ 1
2 ] over Z is Krull but not strongly Krull

5
Nurwigantara, M. M., Wijayanti, I. E., Marubayashi, H., Wahyuni, S., Krull Modules and Completely Integrally Closed

Modules, Journal of Algebra and Its Applications, Vol.21, No. 1, 2350038.
6

Nurwigantara, M. M., Wijayanti, I. E., Marubayashi, H., Wahyuni, S., Krull Modules over Integral Domains, Journal of
Algebra and Its Applications, Vol. 24, No. 2, 2550061.

7
Kim, H., Kim, M. O., 2013, Krull Modules, Algebra Colloquium, Vol. 20, No. 03, p. 463-474.
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Krull Modules in the Sense of Costa and Johnson

There’s another generalization of Krull domain in module case by Costa and

Johnson (1976).

Definitions 10

For m,m′ ∈ M, m|m′ if (∃r ∈ D)m′ = rm.

m is primitive if (∀r ∈ D\{0})(∀m′ ∈ M)(m|rm′ ⇒ m|m′).

Definition 11

M is Krull8 in the sense of Costa-Johnson if

1 (KCJ1) M =
⋂

p∈min(D)

Mp where min(D) = {p E D | p minimal prime},

2 (KCJ2) ∀p ∈ min(D),

1 (∀N ′ E Mp v -submodule)(∃k ∈ Dp)N ′ = kMp,
2 OK (Mp) = Dp,
3 Mp satisfies acc on v -submodules

3 (KCJ3) (∀m ∈ M\{0}) m is primitive in all but a finite number of Mp.3

8Costa, D. L. and Johnson, J. L., 1976, Inert Extensions of Krull Domains, Proceedings of
the American Mathematical Society, Vol. 59, No. 2, p. 189-194.
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Relationship Between Them

Theorem 12[
D Krull domain

M Krull module Costa-Johnson

]
⇒ M strongly Krull ⇒ M Krull

Sketch of Proof

1

[
KCJ2⇒ (∀p ∈ min(D))Mp scic

D Krull⇒ D =
⋂

p∈min(D)

Dp

]
⇒ M scic

2 KCJ2 ⇒ m primitive in Mp iff m ∈ M\pMp

N 6= 0⇒ Np * pMp ⇒ (Np)v = Mp for all but finite number of p, say
p1, . . . , pn

N =
⋂

p∈min(D)

Np ⊆ pl1Mp1 ∩ . . . ∩ plnMpn ∩

( ⋂
p∈min∗(D)

Mp

)
where

min∗(D) = min(D)\{p1, . . . , pn}

Put a = pl11 · · · plnn , then N ⊆ (aM)p1 ∩ . . . ∩ (aM)pn ∩

( ⋂
p∈min∗(D)

Mp

)
⊆ (avM)v ⊆ N, thus N = (avM)v .
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Relationship Between Them

Sketch of Proof of Theorem 12 (cont.)

3


r(∀N ≤ M)(Nv = N ⇒ (∃a E D)N = (avM)v )

(∀a, b E D)((avM)v ⊆ (bvM)v ⇒ av ⊆ bv )

D satisfies acc on v -ideals
⇒ M satisfies acc on v -submodules.
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Relationship Between Them

Examples and Properties

Example 13

〈2, x〉 over Z[x ] is strongly Krull but not Krull in the sense of Costa-Johnson

Proposition 14

Projective modules over Krull domains are strongly Krull modules.

Sketch of Proof

Let M be a projective module ⇒ F := M ⊕M1 is free for some M1.

Localize F into Fp = Mp ⊕ (M1)p which is scic ⇒ Mp is scic ⇒ M is
scic.

F is Krull in the sense of Costa and Johnson ⇒ prove acc on
v -submodules N of M by putting L = N ⊕ {0} ⊆ F and so
N = (aM)v for some a E D.
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Relationship Between Them

Examples and Properties

Theorem 15

If D is Krull, then

max v -ideal ⇔ prime v -ideal ⇔ min

prime ideal

Theorem 16

If M is strongly Krull, then

max v -submodule ⇔ prime v -

submodule ⇒ min prime submodule

Example 17

Z× Z over Z is strongly Krull, Z× {0} is minimal prime but not v -ideal
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