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Factorizations and Set of lengths

Let H be a monoid, that is, a commutative, cancellative semigroup with
identity.

• H is atomic if every non-unit element is a finite product of atoms
(or irreducible elements).

Q. Are the arithmetical properties of two atomic monoids H1 and H2

characteristic for H1 and H2?

⇝ The sets of lengths are the best investigated properties.



Factorizations and Set of lengths
• If a = u1 · . . . · uk for atoms u1, . . . , uk in an atomic monoid H, k is

called the length of factorization of a, and we denote by

L(a) = {k ∈ N | a has a factorization of length k} .

• L(H) = {L(a) | a ∈ H} denotes the system of sets of lengths of H.

Which monoids are we interested in?

ex) Let K be an algebraic number field with class group G. There exists
a factorization preserving map β from OK to the monoid B(G).
More precisely, β(a) = [P1] · . . . · [Pk], where aOK = P1 · · ·Pk is the
factorization into prime ideals.

⇝ The associated inverse problem, which asks whether the system
L(B(G)) is characteristic for the group G, is central to our main
question.



Why B(G)?

• If H is a Krull monoid with finite class group G such that each class
contains a prime divisor, then L(H) = L(B(G)).

• There exists a non-Krull monoid H such that L(H) = L(B(G)) for
some abelian group G.

⇝ While earlier work often focussed on the case of abelian groups,
sequences over non-abelian groups have received wide attention due
to their applications in various branches of algebra, such as the
invariant theory and the factorization theory.

• For a finite (not necessarily abelian) group G, the monoid B(G) is a
(combinatorial) C-monoid, which represents the first class of
C-monoids for which we have some first insight into their structure.

• The combinatorial aspects of the monoid B(G) for a finite (not
necessarily abelian) group G have a rich history, and they are quite
closely related to the Noether number in invariant theory.



Product-one sequences

Let G be a finite group.
• An element of the free abelian monoid F(G) with a basis G is said

to be a sequence over G, i.e., every sequence S over G has the form

S = (g1, g2, . . . , gℓ) = g1 · g2 · . . . · gℓ =
∏•

g∈G
g[vg(S)] ,

where vg(S) denotes the multiplicity of g in S.

• |S| = ℓ is called the length of S.

• T is a subsequence of S if vg(T ) ≤ vg(S) for all g ∈ G.

• S is called a product-one sequence if the terms can be ordered such
that their product (in G) is equal to the identity element of G.

• S is called a product-one free sequence if it has no product-one
subsequence.



The monoid of product-one sequences

ex) Let G = {±E,±I,±J,±K} be the quaternion group of order 8.
• The sequence

I [4] · J [2] = I · I · I · I · J · J
is a (minimal) product-one sequence of length 6 (∵ E = IIIJIJ).

• The sequence
I [3] · J = I · I · I · J

is a product-one free sequence of length 4.

• The set B(G) of all product-one sequences is a submonoid of F(G),
and it is called the monoid of product-one sequences over G.

• An atom (or irreducible element) in B(G) is called a minimal
product-one sequence.



The Characterization Problem

Recall that

L
(
B(G)

)
= {L(B) | B ∈ B(G)} = L(G) (for short) ,

where L(B) is the set of all factorization length k, with k ∈ N and
B = U1 · . . . · Uk for some atoms U1, . . . , Uk.

• Characterization Problem
Given two finite (abelian) groups G1 and G2 such that
L(G1) = L(G2), does it follow that G1

∼= G2?

⇝ [Gao+Geroldinger+Schmid+Zhong] Yes, if abelian groups of rank at
most 2, or isomorphic to Cr

n, and others.

⇝ [Geroldinger+Grynkiewicz+O.+Zhong] Yes, if D(G) ≤ 6, or
isomorphic to a dihedral group of order 2n with n odd.



The Isomorphism Problem

• Isomorphism Problem
Given two (finite) groups G1 and G2 such that B(G1) ∼= B(G2),
does it follow that G1

∼= G2?

⇝ An affirmative answer to the Isomorphism Problem is a necessary
condition for an affirmative answer to the Characterization Problem.

• The answer to the Isomorphism Problem was known so far only for
abelian groups, and its proof heavily depends on the ideal-theoretic
properties of monoids.

Theorem (Geroldinger+O., 2025)
Let G1 and G2 be (not necessarily finite) groups and suppose that G1 is
a torsion group. Then, B(G1) ∼= B(G2) if and only if G1

∼= G2.



The Davenport constant
• d(G) is the maximal length of a product-one free sequence in F(G).
• D(G) is the maximal length of an atom in B(G).
⇝ The Davenport constants of G.

ex) If G ∼= Cn, a cyclic group of order n, then

d(G) = n− 1 and D(G) = n .

ex) If G is the quaternion group of order 8, then

d(G) = 4 and D(G) = 6 .

• d(G) + 1
(1)

≤ D(G)
(2)

≤ |G|:

⇝ [Grynkiewicz, JPAA, 2013] (2) satisfies equality iff G ∼= Cn or
G ∼= D2m with m odd.

⇝ (1) satisfies equality if G is abelian.



The Davenport constant

• If G ∼=
∏r

i=1 Cni with n1 | · · · | nr, then
∑r

i=1(ni− 1)+1 ≤ D(G):

⇝ [Olson, JNT, 1969] Equality holds if G is a p-group or r ≤ 2.

⇝ [Geroldinger+Schneider, JCTA, 1992] If r ≥ 4, then there are
infinitely many groups G of rank r with strict inequality.

• [Geroldinger+Grynkiewicz, JPAA, 2013] If G is a non-cyclic group
having a cyclic index 2 subgroup, then d(G) = |G|

2 and
D(G) = d(G) + |G′|.

• [Qu+Li+Teeuwen, IJM, 2025] If G is a non-cyclic group with p the
smallest prime divisor of |G|, then d(G) = |G|

p + p− 2 iff G has a
cyclic index p subgroup.

⇝ For a fixed positive integer r, structural results characterizing which
finite groups G satisfy D(G) = r are rare.



Union of sets of lengths

• For any k ∈ N, we denote by

Uk(G) =
∪

k∈L,L∈L(G)

L ⊂ N

the union of sets of lengths containing k.

⇝ [O., JCA, 2020] Uk(G) is a finite interval, and if we denote by
ρk(G) = maxUk(G), then

ρk(G) ≤ kD(G)

2
and ρ2k(G) = kD(G) .

NOTE

L(G1) = L(G2) =⇒ Uk(G1) = Uk(G2)

=⇒ D(G1) = ρ2(G1) = ρ2(G2) = D(G2)



Strategy

• [András + Cziszter + Domokos + Szöllősi, RPRF(conference
proceeding), 2025] The directed Cayley diameter and the Davenport
constant.

⇝ They computed d(G) and D(G) for all non-abelian groups G of
order at most 42 using computer program.

• Since D(H) ≤ D(G) for any subgroup H of G, the main approach is
to find the certain subgroup having the Davenport constant at least
10, or to construct a minimal product-one sequence of sufficiently
large length.



Exception: non-abelian 2-groups

• However, the difficulty of classification arises in the case of
non-abelian 2-groups.

• There are many non-abelian 2-groups where we need to clarify the
generators and relations (for example, there are 256 non-abelian
groups of order 64, and 2313 of order 128, etc), and many of these
non-abelian 2-groups have subgroups with relatively small values of
their Davenport constant.

Theorem (O., 2025)
Let G be a finite non-abelian group with |G| > 42.

1. If G has a proper subgroup of order 32, then D(G) ≥ 8.
2. If G has no proper subgroup of order 32, then D(G) ≥ 10.



Classification

Theorem (O., 2025)
Let G be a finite group with |G| ≥ 2.

1. If D(G) ≤ 7, then G is isomorphic to one of the groups listed in
Table.1.

2. If 8 ≤ D(G) ≤ 9, then G is either a non-abelian group having a
proper subgroup of order 32, or isomorphic to one of the groups
listed in Table.2.





Thank you for your attention!
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