On the monoid of product-one sequences over finite groups

Jun Seok Oh

Jeju National University

Conference on Rings and Polynomials

July 19, 2025

Factorizations and Set of lengths

Let ${\cal H}$ be a monoid, that is, a commutative, cancellative semigroup with identity.

 H is atomic if every non-unit element is a finite product of atoms (or irreducible elements).

Q. Are the arithmetical properties of two atomic monoids H_1 and H_2 characteristic for H_1 and H_2 ?

→ The sets of lengths are the best investigated properties.

Factorizations and Set of lengths

• If $a=u_1\cdot\ldots\cdot u_k$ for atoms u_1,\ldots,u_k in an atomic monoid H, k is called the length of factorization of a, and we denote by

$$\mathsf{L}(a) = \{k \in \mathbb{N} \mid a \text{ has a factorization of length } k\}$$
 .

• $\mathcal{L}(H) = \{ \mathsf{L}(a) \mid a \in H \}$ denotes the system of sets of lengths of H.

Which monoids are we interested in?

- ex) Let K be an algebraic number field with class group G. There exists a factorization preserving map β from \mathcal{O}_K to the monoid $\mathcal{B}(G)$. More precisely, $\beta(a) = [P_1] \cdot \ldots \cdot [P_k]$, where $a\mathcal{O}_K = P_1 \cdots P_k$ is the factorization into prime ideals.
- The associated inverse problem, which asks whether the system $\mathcal{L}(\mathcal{B}(G))$ is characteristic for the group G, is central to our main question.

Why $\mathcal{B}(G)$?

- If H is a Krull monoid with finite class group G such that each class contains a prime divisor, then $\mathcal{L}(H) = \mathcal{L}(\mathcal{B}(G))$.
- There exists a non-Krull monoid H such that $\mathcal{L}(H) = \mathcal{L}(\mathcal{B}(G))$ for some abelian group G.
- While earlier work often focussed on the case of abelian groups, sequences over non-abelian groups have received wide attention due to their applications in various branches of algebra, such as the invariant theory and the factorization theory.
 - For a finite (not necessarily abelian) group G, the monoid $\mathcal{B}(G)$ is a (combinatorial) C-monoid, which represents the first class of C-monoids for which we have some first insight into their structure.
 - The combinatorial aspects of the monoid $\mathcal{B}(G)$ for a finite (not necessarily abelian) group G have a rich history, and they are quite closely related to the Noether number in invariant theory.

Product-one sequences

Let G be a finite group.

• An element of the free abelian monoid $\mathcal{F}(G)$ with a basis G is said to be a sequence over G, i.e., every sequence S over G has the form

$$S = (g_1, g_2, \dots, g_\ell) = g_1 \cdot g_2 \cdot \dots \cdot g_\ell = \prod_{g \in G}^{\bullet} g^{[\mathsf{v}_g(S)]},$$

where $v_g(S)$ denotes the multiplicity of g in S.

- $|S| = \ell$ is called the length of S.
- T is a subsequence of S if $v_g(T) \le v_g(S)$ for all $g \in G$.
- *S* is called a product-one sequence if the terms can be ordered such that their product (in *G*) is equal to the identity element of *G*.
- S is called a product-one free sequence if it has no product-one subsequence.

The monoid of product-one sequences

- ex) Let $G = \{\pm E, \pm I, \pm J, \pm K\}$ be the quaternion group of order 8.
 - The sequence

$$I^{[4]} \cdot J^{[2]} = I \cdot I \cdot I \cdot I \cdot J \cdot J$$

is a (minimal) product-one sequence of length 6 (: E = IIIJIJ).

The sequence

$$I^{[3]} \cdot J = I \cdot I \cdot I \cdot J$$

is a product-one free sequence of length 4.

- The set $\mathcal{B}(G)$ of all product-one sequences is a submonoid of $\mathcal{F}(G)$, and it is called the monoid of product-one sequences over G.
- An atom (or irreducible element) in $\mathcal{B}(G)$ is called a minimal product-one sequence.

The Characterization Problem

Recall that

$$\mathcal{L}(\mathcal{B}(G)) = \{ \mathsf{L}(B) \mid B \in \mathcal{B}(G) \} = \mathcal{L}(G) \text{ (for short)},$$

where L(B) is the set of all factorization length k, with $k \in \mathbb{N}$ and $B = U_1 \cdot \ldots \cdot U_k$ for some atoms U_1, \ldots, U_k .

- Characterization Problem Given two finite (abelian) groups G_1 and G_2 such that $\mathcal{L}(G_1) = \mathcal{L}(G_2)$, does it follow that $G_1 \cong G_2$?
- \leadsto [Gao+Geroldinger+Schmid+Zhong] Yes, if abelian groups of rank at most 2, or isomorphic to C_n^r , and others.
- \leadsto [Geroldinger+Grynkiewicz+O.+Zhong] Yes, if D(G) \leq 6, or isomorphic to a dihedral group of order 2n with n odd.

The Isomorphism Problem

- Isomorphism Problem Given two (finite) groups G_1 and G_2 such that $\mathcal{B}(G_1) \cong \mathcal{B}(G_2)$, does it follow that $G_1 \cong G_2$?
- An affirmative answer to the Isomorphism Problem is a necessary condition for an affirmative answer to the Characterization Problem.
 - The answer to the Isomorphism Problem was known so far only for abelian groups, and its proof heavily depends on the ideal-theoretic properties of monoids.

Theorem (Geroldinger+O., 2025)

Let G_1 and G_2 be (not necessarily finite) groups and suppose that G_1 is a torsion group. Then, $\mathcal{B}(G_1) \cong \mathcal{B}(G_2)$ if and only if $G_1 \cong G_2$.

The Davenport constant

- $\operatorname{d}(G)$ is the maximal length of a product-one free sequence in $\mathcal{F}(G)$.
- $\mathsf{D}(G)$ is the maximal length of an atom in $\mathcal{B}(G)$.
- \leadsto The Davenport constants of G.
- ex) If $G \cong C_n$, a cyclic group of order n, then

$$\mathsf{d}(G) = n-1$$
 and $\mathsf{D}(G) = n$.

ex) If G is the quaternion group of order 8, then

$$d(G) = 4$$
 and $D(G) = 6$.

- $d(G) + 1 \stackrel{(1)}{\leq} D(G) \stackrel{(2)}{\leq} |G|$:
 - \leadsto [Grynkiewicz, JPAA, 2013] (2) satisfies equality iff $G\cong C_n$ or $G\cong D_{2m}$ with m odd.
 - \rightsquigarrow (1) satisfies equality if G is abelian.

The Davenport constant

- If $G \cong \prod_{i=1}^r C_{n_i}$ with $n_1 \mid \cdots \mid n_r$, then $\sum_{i=1}^r (n_i 1) + 1 \leq \mathsf{D}(G)$:
 - \leadsto [Olson, JNT, 1969] Equality holds if G is a p-group or $r \leq 2$.
 - \leadsto [Geroldinger+Schneider, JCTA, 1992] If $r \ge 4$, then there are infinitely many groups G of rank r with strict inequality.
- [Geroldinger+Grynkiewicz, JPAA, 2013] If G is a non-cyclic group having a cyclic index 2 subgroup, then $\operatorname{d}(G) = \frac{|G|}{2}$ and $\operatorname{D}(G) = \operatorname{d}(G) + |G'|$.
- [Qu+Li+Teeuwen, IJM, 2025] If G is a non-cyclic group with p the smallest prime divisor of |G|, then $\operatorname{d}(G) = \frac{|G|}{p} + p 2$ iff G has a cyclic index p subgroup.
- For a fixed positive integer r, structural results characterizing which finite groups G satisfy $\mathsf{D}(G)=r$ are rare.

Union of sets of lengths

• For any $k \in \mathbb{N}$, we denote by

$$\mathcal{U}_k(G) = \bigcup_{k \in \mathsf{L}, \mathsf{L} \in \mathcal{L}(G)} \mathsf{L} \subset \mathbb{N}$$

the union of sets of lengths containing k.

 \sim [O., JCA, 2020] $\mathcal{U}_k(G)$ is a finite interval, and if we denote by $\rho_k(G) = \max \mathcal{U}_k(G)$, then

$$\rho_k(G) \le \frac{k\mathsf{D}(G)}{2} \quad \text{and} \quad \rho_{2k}(G) = k\mathsf{D}(G).$$

NOTE

$$\begin{split} \mathcal{L}(G_1) &= \mathcal{L}(G_2) &\implies & \mathcal{U}_k(G_1) = \mathcal{U}_k(G_2) \\ &\implies & \mathsf{D}(G_1) = \rho_2(G_1) = \rho_2(G_2) = \mathsf{D}(G_2) \end{split}$$

Strategy

- [András + Cziszter + Domokos + Szöllősi, RPRF(conference proceeding), 2025] The directed Cayley diameter and the Davenport constant.
- They computed d(G) and D(G) for all non-abelian groups G of order at most 42 using computer program.

• Since $\mathsf{D}(H) \leq \mathsf{D}(G)$ for any subgroup H of G, the main approach is to find the certain subgroup having the Davenport constant at least 10, or to construct a minimal product-one sequence of sufficiently large length.

Exception: non-abelian 2-groups

- However, the difficulty of classification arises in the case of non-abelian 2-groups.
- There are many non-abelian 2-groups where we need to clarify the generators and relations (for example, there are 256 non-abelian groups of order 64, and 2313 of order 128, etc), and many of these non-abelian 2-groups have subgroups with relatively small values of their Davenport constant.

Theorem (O., 2025)

Let G be a finite non-abelian group with |G| > 42.

- 1. If G has a proper subgroup of order 32, then $D(G) \ge 8$.
- 2. If G has no proper subgroup of order 32, then $D(G) \ge 10$.

Classification

Theorem (O., 2025)

Let G be a finite group with $|G| \geq 2$.

- 1. If $\mathsf{D}(G) \leq 7$, then G is isomorphic to one of the groups listed in Table.1.
- 2. If $8 \le D(G) \le 9$, then G is either a non-abelian group having a proper subgroup of order 32, or isomorphic to one of the groups listed in Table.2.

D(G)	G	GAP	D(G)	G	GAP
2	C_2	(2, 1)		C_8 $C_3 \times C_6$	(8, 1) (18, 5)
3	$C_3 \\ C_2^2$	$(3,1) \\ (4,2)$		$C_2^2 \times C_6$ $C_2 \times C_4^2$	(24, 15) (32, 21)
4	$C_4 \\ C_2^3$	(4,1) $(8,5)$		$C_2^{\stackrel{7}{4}} \times C_4^{\stackrel{7}{4}}$ $C_2^{\stackrel{7}{7}}$	(64, 260) (128, 2328)
5	C_5 $C_2 \times C_4$ C_3^2 C_2^4	(5, 1) (8, 2) (9, 2) (16, 14)	8	$C_4 \rtimes C_4$ H_{27} $C_2 \times (C_2^2 \rtimes C_4)$ $C_2^2 \times D_8$ $C_2^2 \times Q_8$	$ \begin{array}{c} (16,4) \\ (27,3) \\ (32,22) \\ (32,46) \\ (32,47) \end{array} $
6	$C_6 \\ C_2^2 \times C_4 \\ C_2^5$	(6, 2) (16, 10) (32, 51)		$C_2 \times \left((\overline{C_4} \times C_2) \rtimes C_2 \right)$ $C_2^3 \rtimes C_2^2$ $(C_2 \times Q_8) \rtimes C_2$	(32, 48) (32, 49) (32, 50)
	$D_6 \\ D_8 \\ Q_8$	(6, 1) (8, 3) (8, 4)		$C_9 \ C_2 imes C_8 \ C_5^2 \ C_2^3 imes C_6 \ C_2^2 imes C_4^2$	(9,1) $(16,5)$ $(25,2)$ $(48,52)$
	C_7 $C_2 \times C_6$ C_4^2 C_3^3	(7,1) $(12,5)$ $(16,2)$ $(27,5)$	9	$C_2^2 imes C_4^2 \ C_3^4 \ C_2^5 imes C_4 \ C_2^8$	(64, 192) (81, 15) (128, 2319) (256, 56092)
7	$C_2^3 \times C_4 \\ C_2^6$	(32, 45) (64, 267)		Q_{12} D_{12} $(C_2 \times C_4) \rtimes C_4$	(12,1) $(12,4)$ $(32,2)$
	$ \begin{array}{c} A_4 \\ C_2^2 \rtimes C_4 \\ C_2 \times D_8 \\ C_2 \times Q_8 \\ (C_2 \times C_4) \rtimes C_2 \end{array} $	(12,3) $(16,3)$ $(16,11)$ $(16,12)$ $(16,13)$		$C_2 \times (C_4 \rtimes C_4)$ $C_4^2 \rtimes C_2$ $C_4 \times D_8$ $C_4 \times Q_8$ $C_2^4 \rtimes C_2$	(32, 23) (32, 24) (32, 25) (32, 26) (32, 27)

Thank you for your attention!

A. Geroldinger and J.S. Oh, *On the isomorphism problem for monoids of product-one sequences*, Bull, London Math. Soc. **57** (2025), 1482–1495.

J.S. Oh, *A classification of finite groups with small Davenport constant*, Comm. Algebra, to appear.