Factorizations in free group algebras

Anh

Factorizations in free group algebras

Phạm Ngọc Ánh

HUN-REN Rényi Institute

Conference on Rings and Polynomials Graz, July 14 – 19, 2025

Aims and tools

algebras Phạm Ngọc Ánh

Factorizations in group algebras of free groups

Cohn cf. [2]: Group algebras of free group are firs (free ideal rings), i.e., rings such that one-sided ideals are free of unique rank; elements of firs admit irreducible factorizations.

Aims: Find irreducible factorizations in free group algebras Uniqueness, algorithm?

Tools: module types, link modules, lattices and localizations.

W. Leavitt fundamental works

algebras Phạm Ngọc Ánh

In 1955/1960 Leavitt asked and answered the question when does a finitely generated free module have a unique rank?

via a notion of *module type*. Leavitt's works were well-accepted, highly esteemed by Cohn, Bergman and Corner... but a majority did realized neither their beauty nor their importance

Leavitt was ahead of his time for decades: Gröbner bases, flat epimorphisms were invented 15 years later in view of the fact that his proof was a marvelous use of the nowadays so-called Gröbner bases or more precisely, Schreier bases.

Module type

Phạm Ngọc Ánh

Theorem 1

Free R-modules are either pairwise non-isomorphic or \exists smallest integers m < n: $R^m \cong R^n$ according to the module type of R is either IBN or (\mathbf{m}, \mathbf{n}) . In the latter case, all R^l (l < m) have a unique rank l and \forall $m \le t \in \mathbb{N}$ $\exists !$ $m \le s < n$: $R^t \cong R^s$.

IBN-rings cover ones with chain conditions or factors into skew fields etc. Module type (1,2) is obvious. Module type (m,n): Algebraic theory of infinity no finiteness condition.

Leavitt 1955-1962: a construction of generic algebras of module type (m,n) over \mathbb{F}_2 for m=1, over \mathbb{Z},\mathbb{Q} for $(m,m+1),m\neq 1$.

Leavitt's *normal form*, i.e., "Gröbner's bases" though it was invented a decade later by Buchberger for polynomial algebras.

Leavitt algebras and localizations I

Phạm Ngọc Ánh

- 1. Construction of a module type (m, n) $1 \le m \le n 1$.
- $L_K(m, n)$ is a localization of a free algebra A on $\{x_{ij}\}$ over a field K by inverting the $m \times n$ matrix $\{x_{ij}\}$.
- 2. Module type (1, n) is well-understood but not (m, n), m > 1.
- 3. Computing module type is essentially one of a Grothendieck group.
- 4. Inverting a set Σ of matrices. If matrices are full, square, it is a Cohn's localization. If Σ is a row, then Leavitt's localization. Invertibility of matrices in Σ is not enough to a universality even in the case of injectivity.
- 5. A matrix is full if it is not a product of non-square ones.

Leavitt algebras and localizations II

Pham Ngoc

- 6. For a universal localization R_{Σ} of R by $\Sigma \exists \jmath : R \to R_{\Sigma}$. $I = \ker \jmath \Longrightarrow 1 + (a_{ij}) \in M_I(R_{\Sigma}), a_{ij} \in I, I \in \mathbb{N}$ invertible.
- 7. Jacobson's localization if $\Sigma = \{1 + M_I(I) \mid I \triangleleft R; I \in \mathbb{N}\}$. If $I \subseteq J(R) \Longrightarrow R = R_{\Sigma}$.
- 8. By uniqueness of inverses, $j \colon R \to R_{\Sigma}$ is a ring epimorphism.
- 9. Power series rings, inverse limits, transfinite nilpotence at Jacobson's localization.
- 10. Find handy constructions of R_{Σ} for good Σ .
- 11. An old twin, the algebra of Fox derivatives is implicitly invented in 1953.

A Leavitt localization

algebras

Phạm Ngọ Ánh

L(R) Leavitt localization by (x_1, \dots, x_n) over R.

Theorem 2

If $j: R \to L(R)$ is injective, then $I_R = \sum x_i R = \oplus x_i R$ is free of rank $n, rI = 0 \Rightarrow r = 0$. If $I_R = \sum_{i=1}^n x_i R \lhd R \Rightarrow L(R) \cong Q(R)$ $= \varinjlim_{I \in \mathbb{N}} \operatorname{Hom}_R(I^I, R), \text{ a ring of right quotients of } R.$

$$x_i^{\star} \in \operatorname{Hom}_{\mathbf{R}}(\mathbf{I}, \mathbf{R}_{\mathbf{R}}) \colon \mathbf{x}_i^{\star}(\mathbf{x}_j) \mapsto \delta_{ij} = \begin{cases} 1 & \text{if} & j = i, \\ 0 & \text{if} & j \neq i \end{cases}, \text{ then }$$
 over $Q(R) \colon (x_1, \cdots, x_n)^{-1} = \begin{pmatrix} x_1^{\star} \\ \vdots \\ x_n^{\star} \end{pmatrix}.$

Jacobson localization

Phạm Ngọc Ánh

 $I \triangleleft R$ transfinitely nilpotent $\Leftrightarrow \bigcap_{m=1}^{\infty} I^m = 0$. $\epsilon \colon R \to R/I = S$ the augmentation; $R \subseteq \varprojlim R/I^I = \hat{R}; I \subseteq J(\hat{R})$, the Jacobson radical. The rational closure R_I^{rat} of R wrt I is the smallest subalgebra of \hat{R} containing R, quasi-inverses of its quasiregular elements (as an elements of \hat{R}).

Theorem 3

If $I \triangleleft R$ is transf. nilpotent, then as either a left or a right R-module, R_I^{rat} is generated by entries of inverses of square matrices 1+Q, respectively, where Q runs over all square matrices whose entries belong to I whence every matrix $1+Q(Q\in M_I)$ is invertible.

Cohn localization

algebras

$$I \triangleleft R$$
; $\Sigma = \{1 + M_I(I) \mid I \in \mathbb{N}\}.$

When is a universal Cohn localization $C_I(R)$ of R by Σ a Jacobson one?

I must be necessarily transf. nilpotent.

Basic examples

algebras

Phạm Ngọ Ánh

- 1. $A = K\langle x_1, \cdots, x_n \rangle$ free algebra over a commutative ring K.
- 2. $\Lambda = KF_n$ group algebra of a free group F_n .
- 3. Γ non-commutative power series algebra over $K \supseteq \Lambda \supseteq A$.

 $\epsilon \colon \Gamma \to K$ augmentation.

The ideal generated by x_1, \dots, x_n free of rank n.

$$\Lambda = K\langle x_1, \cdots, x_n; y_1, \cdots, y_n \rangle / \langle x_i y_i - y_i x_i, 1 - x_1 y_i \rangle.$$

 $A_I^{\mathrm{rat}} = \Lambda_I^{\mathrm{rat}}, I$ augmentation ideal.

4. Fox calculus, geometric topology concern Λ , Γ establishing connection to module type and Leavitt localization.

Link modules I

algebras

Phạm Ngọc Ánh

$$I_R \triangleleft R, rI = 0 \Rightarrow r = 0$$
 free on x_1, \dots, x_n . $\epsilon \colon R \to R/I = S$.

$$0 \to {}^{n}R \xrightarrow{(x_{1} \cdots x_{n})} R \xrightarrow{\epsilon} S \to 0 : (x_{1} \cdots x_{n}) \begin{pmatrix} r_{1} \\ \vdots \\ r_{n} \end{pmatrix} = \sum_{i=1}^{n} x_{i} r_{i}$$

Definition 4

 $_RM$ weak link (Sato) module wrt I if $\operatorname{Tor}^R_*(S,M)=0$, or equivalently, $\exists M^n\cong M$ such that

(1)
$$(m_1, \dots, m_n) \in M^n \longmapsto \sum_{i=1}^n x_i m_i = m \in M.$$

If _RM is finitely presented, then M Sato module L-module.

Link modules II

- Phạm Ngọc Ánh
- 1. Link modules is exactly left modules over Leavitt localization.
- 2. Assignments $m \mapsto m_i$ are (generalized) Fox derivations ∂_i 's

Warning. No symmetry: left modules but right localization!

- 3. New aspects: No symmetry as for Leavitt path algebras.
- 4. Applications of Leavitt localizations to geometric topology.
- 5. Basic Examples for link modules
- 5.1. $r \in R$, $\epsilon(r) = 1 \Rightarrow L(R)/L(R)r \cong R/Rr$ link modules.
- 5.2. $\rho \in 1 + M_I(I) \Rightarrow M = \operatorname{coker} \rho_R = R^I / R^I \rho_R$ link module.
- 5.3. $\rho \in 1 + M_I(I), \ \rho^{-1} = (b_{ij}) \in M_I(R_I^{\text{rat}}) \Longrightarrow \sum_{i,j=1}^{I} Rb_{ij}/R$

link module $\Longrightarrow R_I^{\rm rat}/R$ weak link module.

Link modules III

algebras

Phạm Ngọc Ánh

Theorem 5

Let S be a domain over a principal ideal domain K such that S is a free K-module of finite rank, and $R = S\langle x_1, \cdots, x_n \rangle$ a free algebra on $\{x_1, \cdots, x_n\}$. Then R^{rat} wrt $S\langle \langle x_1, \cdots, x_n \rangle \rangle$ is the universal Cohn localization of R wrt $1 + M_I$ where $I = \sum_{i=1}^n x_i R$.

Some comments

There are two ways to compute $\operatorname{Tor}_{*}^{R}(I, M)$.

By a free resolution of $I: \operatorname{Tor}_*^R(I, M) = 0 \iff M$ link module By a free resolution of a link module M to a deeper study of M. New aspects, methods to module theory of Leavitt localizations.

Factorizations in group algebras of free groups I

algebras

In contrast to the commutative case it is a difficult result of

Cohn that group algebras of free groups are UFD. The best proof is due to Rosenmann-Rosset using Schreier bases.

Cohn's example: [5, Exercise 5.3.5]

$$xyzyx + xyz + zyx + xyx + x + z = (xyz + x + z)(yx + 1) =$$

= $(xy + 1)(zyx + x + z)$

Factorizations in group algebras of free groups II

Phạm Ngọc Ánh

 $\Lambda = KF_n$ the group algebra of a free group F_n of rank n over a filed K. $L(\Lambda)$ the Leavitt localization of Λ . $\gamma \in \Lambda$ comonic $\iff \epsilon(\gamma) = 1$.

Theorem 6

For any two polynomials $\gamma, \lambda \in \Lambda$ there is a uniquely determined (up to a unit) comonic polynomial $\delta \in \Lambda$, called, a greatest common divisor of γ, λ by the property that δ is a generator of the left ideal of $L(\Lambda)$ generated by γ and λ , that is, $L(\Lambda)\gamma + L(\Lambda)\lambda = L(\Lambda)\delta$

Theorem 7

Let $\pi \in \Lambda$ be a comonic polynomial which is not a unit. Then π is irreducible if and only if the Sato module $\Lambda/\Lambda\pi$ is a simple module over the Leavitt localization $L(\Lambda)$.

The main result

Theorem 8

 $\alpha \in \Lambda$ non-unital comonic; $L(\Lambda)M = \Lambda/\Lambda\alpha$. Every irreducible factorization $\alpha = \rho_1 \cdot \rho_I$ corresponds to a composition chain

$$0 \subseteq \frac{\Lambda \rho_2 \cdots \rho_I}{\Lambda \alpha} \subseteq \frac{\Lambda \rho_3 \cdots \rho_I}{\Lambda \alpha} \subseteq \cdots \subseteq \frac{\Lambda \rho_I}{\Lambda \alpha} \subseteq \frac{\Lambda}{\Lambda \alpha}$$

of M. Each simple subfactor $\frac{\Lambda \rho_{j-1} \cdots \rho_l}{\Lambda \rho_j \cdots \rho_l}$ or $\frac{\Lambda}{\Lambda \rho_l}$ determines ρ_j or ρ_l , respectively, only up to the similarity.

 $a, b \in R$ similar \iff left (right) modules R/Ra, R/Rb(R/aR, R/bR) isomorphic.

The idea and some difficulties of the proof

algebras

Phạm Ngọ Ánh

A has a degree function ensuring irreducible factorizations.

 Λ has only an order function no degree function.

An order function is not suitable to studying factorizations.

 Λ has a length function suitable to studying factorizations.

A length function reduces the process by quite slowly.

Basic references

algebras

Phạm Ngọc Ánh

- G. Abrams, P. Ara, M. Siles Molina, *Leavitt path algebras*, Lecture Notes in Mathematics **2191**, Springer 2018.
- P. N. Ánh, Link modules, localizations and factorizations, manuscript.
- P. N. Ánh, F. Mantese, Non-commutative factorizations and finite-dimensional representations of free algebras, submitted to Advances in Math.
- P.N. Ánh, M. Siddoway, Module types of localizations, with applications to leavitt path algebras, to appear in Israel J. Math.
- P. M. Cohn, *An Introduction to Ring Theory*, Springer 2000.

Basic references

algebras

Phạm Ngọ Ánh

Thank you for your attention

algebras

Thank you for your attention!