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Primitive elements

Let Fq be the finite field with q elements, where q is a power of a
prime p.

The group F∗
q is cyclic and any of its generators is called primitive

element.

Primitive elements are widely used in coding theory, cryptography,
and pseudorandom generation because they simplify multiplication
to modular addition of exponents.
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Normal elements

For n ∈ N, let Fqn be the unique n-degree extension of Fq.

Fqn can also be viewed as a Fq-vector space of dimension n.

If it admits a Fq-basis of the form {β, βq, . . . , βqn−1} for some β ∈
Fqn , β is called normal element over Fq.

Proposition

β ∈ Fqn is normal ⇐⇒

gcd
(
βxn−1 + βqxn−2 + · · ·+ βqn−2

x + βqn−1
, xn − 1

)
= 1.

Normal elements have several applications, since they simplify com-
putation of powers and other field operations through simple linear
transformations.
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Primitive Normal Basis Theorem

Primitive normal elements combine the benefits of both structures,
enabling efficient implementation of arithmetic operations in Fq.

Theorem (Lenstra & Schoof 1987, Cohen & Huczynska 2003)

For every q ≥ 2 and n ≥ 1, there exists a primitive element α ∈ Fqn

that is normal over Fq.
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k-normal elements

β ∈ Fqn is a k-normal element if their Fq-Galois conjugates

β, βq, . . . , βqn−1

generate a Fq-vector space of dimension n − k.

Proposition

β ∈ Fqn is k-normal ⇐⇒

gcd
(
βxn−1 + βqxn−2 + · · ·+ βqn−2

x + βqn−1
, xn − 1

)
has degree k.

For α ∈ Fqn and f (x) =
r∑

i=0

aix
i ∈ Fq[x ], let f ◦ α =

r∑
i=0

aiα
qi .

Proposition

Let α ∈ Fqn be a normal element and f ∈ Fq[x ] be a divisor of
xn − 1 of degree k. Then β = f ◦ α is k-normal.
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Existence of primitive k-normal elements

Problem
Determine (n, k) such that there exist primitive k-normal elements
in Fqn over Fq.

Partial results:

i. k = 0: Primitive normal basis thm.

ii. k = 1: Reis & Thomson 2018.

iii. k = 2: Aguirre & Neumann 2021.

iv. 0 ≤ k ≤ n: Huczynska, Mullen, Panario & Thomson 2013.
There exists α ∈ Fqn that is k-normal over Fq ⇐⇒ xn − 1
has a monic k-degree divisor f ∈ Fq[x ] (this has nothing to do
with primitivity...).
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Existence of primitive k-normal elements

Theorem (Reis 2022)

Let n ∈ N. There exists C > 0 such that, for every q > C and every
0 ≤ k ≤ n, TFAE:

1. there exist primitive elements in Fqn that are k-normal over Fq;

2. the polynomial xn−1 admits a monic divisor f ∈ Fq[x ] of degree
n−k such that f (x) does not divide any binomial xd−δ ∈ Fq[x ]
with d < n.

The proof relies on character sums estimates.
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Order and polynomials free of binomials

Let f ∈ Fq[x ] that is not divisible by x . There exists e ∈ N such
that f (x) | xe − 1 and e is minimal. This is the order of f and we
write e = ord(f ).

In this case, we say that f is free of binomials if f (x) does not divide
any binomial xd − δ ∈ Fq[x ] with d < ord(f ).

If f is free of binomials and divides xn − 1, then n = ord(f ).

Finding f ∈ Fqn [x ] that satisfies Condition 2. in previous theorem
is equivalent to finding a monic polynomial f ∈ Fq[x ] such that
ord(f ) = n, f is free of binomials and deg(f ) = n − k.
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The main results

Goal: To describe the set of degrees of f ∈ Fq[x ] that are free of
binomials and have a fixed order. We completely describe this set
when the order equals a positive integer n > 1 whose prime factors
divide p(q − 1).

Theorem (Brochero Mart́ınez, Reis & Ribas 2025)

Let n ∈ N and let 0 ≤ k ≤ n. Then there exists f ∈ Fq[x ] monic
such that ord(f ) = n, f is free of binomials and deg(f ) = n−k ⇐⇒
one of the following hold:

1. There exists h ∈ Fq[x ] monic with at least two distinct irredu-
cible factors such that ord(h) = n and deg(h) = n − k;

2. n = pαu, with gcd(u, p) = gcd(u, q−1) = 1 and k = n−MN,
where pα−1 < M ≤ pα and N = ordu(q).
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Theorem (Brochero Mart́ınez, Reis & Ribas 2025)

Let n ∈ N≥2 whose prime factors divide p(q−1) and let 0 ≤ k ≤ n.
Write n = pα ·pα1

1 . . . pαs
s , where α, s ≥ 0 and p1, . . . , ps are distinct

prime factors of q − 1. Then there exists f ∈ Fq[x ] monic such
that ord(f ) = n, f is free of binomials and deg(f ) = n − k ⇐⇒
n − k ≥ g(q, n), where g(q, n) is given as follows:

1. If s = 0, then g(q, n) = pα−1 + 1;

2. If s ≥ 1, set u = n/pα. WLOG assume that {1, . . . , t} is the
set of integers 1 ≤ i ≤ s such that pαi

i ∤ q − 1 (t = 0 if the
latter does not hold for any 1 ≤ i ≤ s).

2.1. If t ≤ 1, then g(q, n) = ordu(q) +

{
1 if α = 0,

pα−1 + 1 if α > 0;

2.2. If t > 1, then

g(q, n) =
t∑

i=1

ordpαi
i
(q) +

{
0 if α = 0,

pα−1 + 1 if α > 0.
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The proof considers some cases and subcases according to the fac-
torization of n, and in each of them we build the polynomials with
the required properties.

Corollary

Let n ∈ N and let Sn be set of prime powers q = ps such that every
prime factor of n divides p(q − 1). Then there exists C > 0 such
that, for every q ∈ Sn with q > C and every 0 ≤ k ≤ n, TFAE:

1. there exist primitive k-normal elements in Fqn over Fq;

2. n − k ≥ g(q, n), where g(q, n) is as in the previous theorem.
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Known results on cyclotomic polynomials

For n ∈ N with gcd(n, q) = 1, the n-th cyclotomic polynomial Φn(x)

is defined recursively by xn − 1 =
∏
d |n

Φd(x).

If p = char(Fq), then xnp
ℓ − 1 =

∏
d |n

Φd(x)
pℓ when p ∤ n.

xn − 1 is squarefree ⇐⇒ p ∤ n.

Lemma
Let d ∈ N such that gcd(d , q) = 1. Then Φd(x) splits into

φ(d)
ordd (q)

irreducible monic polynomials over Fq[x ] of the same degree ordd(q),
where φ is the Euler Totient function.

In this case, Φd(x) is the product of all monic irreducible polynomials
of order d .
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Known results on orders

If f (x) ̸= x is irreducible of order E , then

deg(f ) = ordE (q).

For pairwise coprime f1, . . . , fr ∈ Fq[x ] not divisible by x ,

ord(f1 . . . fr ) = lcm1≤i≤r{ord(fi )}.

For an irreducible g ∈ Fq[x ] with x ∤ g , let f = g r . If e = ord(g)
and t ∈ N is the smallest for which pt ≥ r , then

ord(f ) = ept .
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Properties of polynomials free of binomials

Lemma
Let f ∈ Fq[x ] be squarefree not free of binomials with x ∤ f (x). Set
n = ord(f ) and let d ∈ N be the smallest such that f (x) | xd − δ ∈
Fq[x ]. If f (x) | xD − α ∈ Fq[x ], there exists k ∈ N such that
D = dk. In particular, d | n, ord(δ) = n

d and α = δk .

Lemma
Let f ∈ Fq[x ] with x ∤ f (x) and let F be its squarefree part. Then
f is free of binomials ⇐⇒ F is free of binomials.

Lemma
Let f , g ∈ Fq[x ] be coprime and free of binomials. Then so is fg .

Lemma
Let f ∈ Fq[x ] be squarefree whose order equals n, a prime power. If
f is not free of binomials, then f (x) | Φn(x).
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Proposition

Let n ≥ 2 not divisible by p. Suppose that there exist m ≥ 2 and
distinct monic irreducible g1, . . . , gm ∈ Fq[x ], such that:

1. F = g1 . . . gm has degree k and order n;

2. if n is even, there exists 1≤ i≤n such that ei =
n

ord(gi )
is even.

Then there exists a monic irreducible polynomial g such that F0 =
g · g2 . . . gm has degree k, order n and it is free of binomials.

The result below implies the second theorem when xn − 1 has a
divisor of degree k, order n and at least two distinct irreducible
factors.

Proposition

Let n ≥ 2 and suppose that xn − 1 has a k-degree divisor of order n
which has at least two distinct irreducible factors. Then xn − 1 has
a k-degree divisor of order n that is free of binomials.
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A relation with coding theory

Let C, Cλ be vector subspaces of Fqn over Fq.

C is a cyclic code if, for every c = (c1, . . . , cn) ∈ C, we have

c ′ = (cn, c1, . . . , cn−1) ∈ C.

Cλ is a λ-constacyclic code if, for every c = (c1, . . . , cn) ∈ Cλ, we
have

c ′ = (λcn, c1, . . . , cn−1) ∈ Cλ.
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If C ⊂ Fn
q is a cyclic code, then

(c1, . . . , cn) ∈ C 7→ c1 + c2x + · · ·+ cnx
n−1 ∈ I ,

where I is a nontrivial ideal of the ring
Fq[x]
⟨xn−1⟩ . The shifts correspond

to multiplications by x .

Similarly, the words in a constacyclic code Cλ ⊂ Fd
q can be naturally

identified as polynomials that belong to a nontrivial ideal J of the

ring
Fq[x]

⟨xd−λ⟩ .

Since these rings are PID, I = ⟨f ⟩ and J = ⟨g⟩, where f (x) | xn − 1
and g(x) | xd − λ.

Suppose that ord(f ) = n and f is free of binomials. Then f (x)
does not divide any binomial xd − λ ∈ Fq[x ] with d < n. Therefore
Cλ ̸⊂ C for any constacyclic code Cλ.
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That’s all Folks! Thank you!

savio.ribas@ufop.edu.br
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