Separating sets of invariant algebras

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Conference on Rings and Polynomials, TU Graz 14-19.03.2025

The presentation contains results from joint work with K. Zhao and Q. Zhong

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへぐ

Schefler Barna

Outline

1 Motivations and main questions

2 Degree bounds for separating sets

3 Small separating sets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Bu

Outline

1 Motivations and main questions

2 Degree bounds for separating sets

3 Small separating sets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Let $\rho: G \to GL(V)$ be a finite dimensional complex representation of the finite group G. Denote by x_1, x_2, \ldots, x_n a basis of the dual space V^* . From now we suppress ρ from the notation and use only V to denote a representation.

・ロト・日本・日本・日本・日本・日本

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Let $\rho: G \to GL(V)$ be a finite dimensional complex representation of the finite group G. Denote by x_1, x_2, \ldots, x_n a basis of the dual space V^* . From now we suppress ρ from the notation and use only V to denote a representation. The representation induces G-action on the coordinate ring $\mathbb{C}[V] = \mathbb{C}[x_1, \ldots, x_n]$ of V:

for $g \in G$ and $f \in \mathbb{C}[V]$ we have: $g \cdot f(x_1, \ldots, x_n) = f(g^{-1} \cdot x_1, \ldots, g^{-1} \cdot x_n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Let $\rho: G \to GL(V)$ be a finite dimensional complex representation of the finite group G. Denote by $x_1, x_2, ..., x_n$ a basis of the dual space V^* . From now we suppress ρ from the notation and use only V to denote a representation. The representation induces G-action on the coordinate ring $\mathbb{C}[V] = \mathbb{C}[x_1, ..., x_n]$ of V:

for $g \in G$ and $f \in \mathbb{C}[V]$ we have: $g \cdot f(x_1, \ldots, x_n) = f(g^{-1} \cdot x_1, \ldots, g^{-1} \cdot x_n)$

A theorem of Noether states that the invariant subalgebra

$$\mathbb{C}[V]^{\mathsf{G}} := \{f \in \mathbb{C}[V] : g \cdot f = f \text{ for } \forall g \in \mathsf{G}\}$$

is finitely generated by homogeneous polynomials of degree $\leq |G|$.

・ロト・(四ト・(日下・(日下・))

Schefler Barna

Separating sets of invariant algebras

Eötvös Loránd University, Budapest supervisor: Domokos Mátvás, Rényi Institute, Budapest

Let $\rho: G \to GL(V)$ be a finite dimensional complex representation of the finite group G. Denote by $x_1, x_2, ..., x_n$ a basis of the dual space V^* . From now we suppress ρ from the notation and use only V to denote a representation. The representation induces G-action on the coordinate ring $\mathbb{C}[V] = \mathbb{C}[x_1, ..., x_n]$ of V:

for $g \in G$ and $f \in \mathbb{C}[V]$ we have: $g \cdot f(x_1, \ldots, x_n) = f(g^{-1} \cdot x_1, \ldots, g^{-1} \cdot x_n)$

A theorem of Noether states that the invariant subalgebra

$$\mathbb{C}[V]^{\mathsf{G}} := \{f \in \mathbb{C}[V] : g \cdot f = f \text{ for } \forall g \in \mathsf{G}\}$$

is finitely generated by homogeneous polynomials of degree $\leq |G|$. One can raise two questions:

- What is a sharp upper bound for the degree of the generators?
- What is a sharp lower bound for the number of the generators?

Schefler Barna

Definition

Let $\beta(G, V)$ be the minimal positive integer d such that $\mathbb{C}[V]^G$ is generated by homogeneous polynomials of degree at most d. The Noether number $\beta(G)$ of a finite group G is

 $\beta(G) := \max_{V} \{\beta(G, V) : V \text{ is a finite dimensional representation of } G\}$

・ロト・日本・日本・日本・日本・日本

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Example

Consider the dihedral group D_4 and its two dimensional representation:

$$V: \quad r\mapsto \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \quad s\mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Then the algebra generators of $\mathbb{C}[V]^{D_4}$ are $\{xy, x^4 + y^4\}$. (Check: (-ix)(iy) = xy, yx = xy and $(-ix)^4 + (ix)^4 = x^4 + y^4$, $y^4 + x^4 = x^4 + y^4$.)

・ロト・日本・日本・日本・日本・日本

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Example

Consider the dihedral group D_4 and its two dimensional representation:

$$V: \quad r\mapsto \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \quad s\mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Then the algebra generators of $\mathbb{C}[V]^{D_4}$ are $\{xy, x^4 + y^4\}$. (Check: (-ix)(iy) = xy, yx = xy and $(-ix)^4 + (ix)^4 = x^4 + y^4$, $y^4 + x^4 = x^4 + y^4$.) For the three dimensional representation

$$V': \quad r \mapsto \begin{bmatrix} i & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad s \mapsto \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

the algebra generators of $\mathbb{C}[V']^{D_4}$ are $\{z^2, xy, x^4 + y^4, z(x^4 - y^4)\}_{z \in \mathbb{C}}$

Schefler Barna

A subset $S \subset \mathbb{C}[V]^G$ is called *separating set* if the following holds:

if for any $v_1 \neq v_2 \in V$ and $f \in S$ we have $f(v_1) = f(v_2)$, then $h(v_1) = h(v_2)$ holds for all $h \in \mathbb{C}[V]^G$

For example: a generating set.

・ロ・・四・・ヨ・ ・ヨ・ うらぐ

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

A subset $S \subset \mathbb{C}[V]^G$ is called *separating set* if the following holds:

if for any $v_1 \neq v_2 \in V$ and $f \in S$ we have $f(v_1) = f(v_2)$, then $h(v_1) = h(v_2)$ holds for all $h \in \mathbb{C}[V]^G$

For example: a generating set.

If G is a *finite* group, then a subset $S \subset \mathbb{C}[V]^G$ is a separating set if and only if:

 $Gv_1 \neq Gv_2$ implies that there exists $f \in S$ such that $f(v_1) \neq f(v_2)$

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

イロト イボト イヨト イヨト 二日

A subset $S \subset \mathbb{C}[V]^G$ is called *separating set* if the following holds:

if for any $v_1 \neq v_2 \in V$ and $f \in S$ we have $f(v_1) = f(v_2)$, then $h(v_1) = h(v_2)$ holds for all $h \in \mathbb{C}[V]^G$

For example: a generating set.

If G is a *finite* group, then a subset $S \subset \mathbb{C}[V]^G$ is a separating set if and only if:

 $Gv_1 \neq Gv_2$ implies that there exists $f \in S$ such that $f(v_1) \neq f(v_2)$

Again, we have the questions:

Questions

- What is a sharp upper bound for the degrees of the separating invariants?
- What is a sharp lower bound for the size of a separating set?

Schefler Barna

Definition

Let $\beta_{sep}(G, V)$ be the minimal positive integer d such that $\mathbb{C}[V]^G$ contains a separating set whose elements are homogeneous polynomials of degree at most d. The separating Noether number $\beta_{sep}(G)$ of a finite group G is

 $\beta_{sep}(G) := \max_{V} \{ \beta_{sep}(G, V) : V \text{ is a finite dimensional representation of } G \}$

・ロト・日本・日本・日本・日本・日本

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Properties

- $\beta(G) \leq |G|$
- $\beta(G,V) \leq \beta(G,V \oplus V')$
- $\ \beta(G, V_{reg}) = \beta(G)$

・ロト・日本・日本・日本・日本・日本

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapes

Properties

- $\beta(G) \leq |G|$
- $\beta(G,V) \leq \beta(G,V \oplus V')$
- $\ \ \, \beta(G,V_{reg})=\beta(G)$

The same facts are also true for $\beta_{\rm sep}.$ Moreover, we have:

•
$$\beta_{ ext{sep}}(G) \leq \beta(G)$$

$$\beta_{\rm sep}(G,V_{mf}) = \beta_{\rm sep}(G)$$

 $\beta_{sep}(C_n) = \beta(C_n) = n$. For any noncyclic finite group $G: \ \beta(G) < |G|$

Schefler Barna

Separating sets of invariant algebras

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest .

Outline

1 Motivations and main questions

- 2 Degree bounds for separating sets
- 3 Small separating sets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Schefler Barna

Eôtvôs Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Historical background

- 1916 Noether: degree bound for generators of the invariant algebra
- 1990 Schmid: β(G)
- 2010 Kohls-Kraft: $\beta_{sep}(G)$
- 2012-2018 -Cziszter-Domokos: systematic study of $\beta(G)$
- 2017 Domokos: $\beta_{sep}(G)$ for abelian groups

Schefler Barna

Separating sets of invariant algebras

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

The separating Noether number of finite non-abelian groups

Reminder

 $\beta_{\mathrm{sep}}(G) = \beta_{\mathrm{sep}}(G, V_{mf})$

Lemma

Let V_1, \ldots, V_q be a complete list of representatives of the isomorphism classes of irreducible representations of G. Then for every G there exists a positive integer $\kappa(G) \ll q$ such that

$$\beta_{sep}(G) = \max_{\substack{J \subset \{1, \dots, q\} \\ |J| \leq \kappa(G)}} \{\beta_{sep}(G, \bigoplus_{j \in J} V_j)\}.$$

Schefler Barna

Separating sets of invariant algebras

ものく 加 (中国)・(四)・(日)・

Proposition [25+, Domokos, S.]

The exact value of the separating Noether number is calculated for any group G with |G| < 32.

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátvás, Rényi Institute, Budapest

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Proposition [25+, Domokos, S.]

The exact value of the separating Noether number is calculated for any group G with |G| < 32.

Theorem [25+, Domokos, S.]

If G is a non-cyclic finite group with a cyclic subgroup of index 2, then

$$eta_{ ext{sep}}(G) = rac{1}{2}|G| + egin{cases} 2 & ext{if } G = ext{Dic}_{4m}, \ m>1; \ 1 & ext{otherwise}. \end{cases}$$

Schefler Barna

Eötvös Loránd University, Budapest supervisor. Domokos Mátyás, Rényi Institute, Budapes

Small separating sets

Separating Noether number of finite abelian groups

Let G_0 be a subset of the (additively) written finite abelian group G. The elements of the (multiplicatively written) free abelian monoid $\mathcal{F}(G_0)$ with basis G_0 are written as

$$S=g_1\ldots g_k=\prod_{g\in G_0}g^{\mathsf{v}_g(S)}.$$

Consider the submonoid

$$\mathcal{B}(\mathcal{G}_0) = \{\prod_{g \in \mathcal{G}_0} g^{\mathsf{v}_g(\mathcal{S})} \in \mathcal{F}(\mathcal{G}_0) : \sum_{g \in \mathcal{G}_0} \mathsf{v}_g(\mathcal{S})g = 0\}$$

▲□▶ ▲□▶ ▲≡▶ ▲≡▶ = 三 のへで

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Separating Noether number of finite abelian groups

Let G_0 be a subset of the (additively) written finite abelian group G. The elements of the (multiplicatively written) free abelian monoid $\mathcal{F}(G_0)$ with basis G_0 are written as

$$S=g_1\ldots g_k=\prod_{g\in G_0}g^{\mathsf{v}_g(S)}.$$

Consider the submonoid

$$\mathcal{B}(\mathcal{G}_0) = \{\prod_{g \in \mathcal{G}_0} g^{\mathsf{v}_g(\mathcal{S})} \in \mathcal{F}(\mathcal{G}_0) : \sum_{g \in \mathcal{G}_0} \mathsf{v}_g(\mathcal{S})g = 0\}$$

An element of $\mathcal{B}(G_0)$ that can not be written as a product of two non-invertible elements is called an *atom*.

The *length* of the element $S = \prod_{g \in G_0} g^{v_g(S)} \in \mathcal{B}(G_0)$ is $|S| = \sum_{g \in G_0} v_g(S)$. The maximal length of the atoms of the monoid $\mathcal{B}(G)$ is called the *Davenport* constant of the group G and is denoted by D(G).

Example

Let us have
$$G = C_2 \oplus C_2$$
, and denote by $\{0, a, b, c\}$ the elements of the group.
 $a + a = 0$, hence $A_1 = a^2 b^0 c^0 \in \mathcal{B}(\{a, b, c\})$ with $|A_1| = 2$
 $b + b = 0$, hence $A_2 = a^0 b^2 c^0 \in \mathcal{B}(\{a, b, c\})$ with $|A_2| = 2$
 $c + c = 0$, hence $A_3 = a^0 b^0 c^2 \in \mathcal{B}(\{a, b, c\})$ with $|A_3| = 2$
 $a + b + c = 0$, hence $A_4 = a^1 b^1 c^1 \in \mathcal{B}(\{a, b, c\})$ with $|A_4| = 3$
Of course, the maximal length of the atoms is 3, so $D(G) = 3$.

Schefler Barna

Eötvös Loránd University. Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

A finite abelian group G can be uniquely decomposed as $G = C_{n_1} \oplus C_{n_2} \oplus \cdots \oplus C_{n_r}$, where $2 \le n_1 \mid n_2 \mid \cdots \mid n_r$. Here r is the rank of the group. Setting

$$D^*(G) := 1 + \sum_{i=1}^r (n_i - 1),$$

we have the inequality $D^*(G) \leq D(G)$.

Question: For which abelian groups G do we have $D^*(G) = D(G)$?

A finite abelian group G can be uniquely decomposed as $G = C_{n_1} \oplus C_{n_2} \oplus \cdots \oplus C_{n_r}$, where $2 \le n_1 \mid n_2 \mid \cdots \mid n_r$. Here r is the rank of the group. Setting

$$D^*(G) := 1 + \sum_{i=1}^r (n_i - 1),$$

we have the inequality $D^*(G) \le D(G)$. Question: For which abelian groups G do we have $D^*(G) = D(G)$?

Theorems ['69, Olson]

- If rank(G) = 2 (i.e. $G = C_{n_1} \oplus C_{n_2}$ with $1 < n_1 \mid n_2$), then $D(G) = n_2 + n_1 1$.
- If G is a finite abelian p-group, then $D(G) = 1 + \sum_{i=1}^{r} (n_i 1) + 1$.

Conjectures

- For the direct sum $C_n^r = C_n \oplus ... \oplus C_n$ (r copies) we have: $D(C_n^r) = 1 + (n-1)r$
- If rank(G) = 3 (i.e. $G = C_{n_1} \oplus C_{n_2} \oplus C_{n_3}$), then $D(G) = n_1 + n_2 + n_3 2$.

Schefler Barna

Fact

For a finite abelian group G, $\mathbb{C}[V]^G$ has a generating set consisting of monomials.

Corollary

For a finite abelian group G, the value of the Noether number coincides with the value of the Davenport constant (the maximal length of an irreducible zero-sum sequence over G):

$$\beta(G) = \mathsf{D}(G)$$

Schefler Barna

Eotvos Lorand University, Budapest supervisor: Domokos Matyas, Rényi Institu

Fact

For a finite abelian group G, $\mathbb{C}[V]^G$ has a generating set consisting of monomials.

Corollary

For a finite abelian group G, the value of the Noether number coincides with the value of the Davenport constant (the maximal length of an irreducible zero-sum sequence over G):

$$\beta(G) = \mathsf{D}(G)$$

Theorem ['17, Domokos]

For a finite abelian group G, the number $\beta_{sep}(G)$ can be given with the language of zero-sum sequences.

Schefler Barna

Theorem ['25+, S., Zhao, Zhong]

Let $G = C_{n_1} \oplus \ldots \oplus C_{n_r}$ with $1 < n_1 \mid n_2 \ldots n_{r-1} \mid n_r$ and $r \ge 2$. Suppose $D(n_s G) = D^*(n_s G)$, where $s = \lfloor \frac{r+1}{2} \rfloor$. Then

$$\begin{cases} \beta_{\rm sep}(G) = n_s + n_{s+1} + \ldots + n_r, & \text{if } r \text{ is odd} \\ \beta_{\rm sep}(G) \leq \frac{n_s}{p} + n_{s+1} + \ldots + n_r, & \text{if } r \text{ is even}, \end{cases}$$

where p is the minimal prime divisor of n_s .

・ロ・・日・・田・・日・ うらぐ

Schefler Barna

Separating sets of invariant algebras

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Corollary ['25+, S., Zhao, Zhong]

Let $G = C_{n_1} \oplus \ldots \oplus C_{n_r}$ with $1 < n_1 \mid n_2 \ldots n_{r-1} \mid n_r$ and $r \ge 2$, and let p be the minimal prime divisor of n_s . We have

$$\begin{cases} \beta_{\text{sep}}(G) = n_s + n_{s+1} + \ldots + n_r, & \text{if } r \text{ is odd} \\ \beta_{\text{sep}}(G) = \frac{n_s}{p} + n_{s+1} + \ldots + n_r, & \text{if } r \text{ is even}, \end{cases}$$

for the following infinite families of finite abelian groups:

- groups of rank $r \leq 5$,
- *p*-groups,
- groups of type C_n^r .

・ロ・・西・・ヨ・・ヨ・ ヨー うへぐ

Eötvös Loránd University, Budapest supervisor. Domokos Mátyás, Rényi Institute, Budapest

Outline

1 Motivations and main questions

2 Degree bounds for separating sets

3 Small separating sets

◆□ > ◆□ > ◆三 > ◆三 > 三 ・ ○ < ♡

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Proposition ['08, Dufresne]

If V is a n-dimensional representation of G, then a separating set of size 2n + 1 exists.

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátvás, Rényi Institute, Budapest

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Proposition ['08, Dufresne]

If V is a n-dimensional representation of G, then a separating set of size 2n + 1 exists.

Corollary ['24, Cahill, Contreras, Hip]

Let G be a finite abelian group of rank r and of order n. Then there exists a separating set of $\mathbb{C}[V_{\text{reg}}]^G$ size $\sum_{i=1}^{\kappa(G)+1} \binom{n}{i}$ consisting of monomials.

Schefler Barna

Separating sets of invariant algebras

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Proposition ['25+, S., Zhao, Zhong]

Let C_n be the cyclic group of order n. The minimal size of a separating set of $\mathbb{C}[V_{reg}]^{C_n}$ consisting of monomials is

$$n+\sum_{\substack{d\mid n\\1< d}}\frac{2^{\omega(d)}-2}{2}\phi(d),$$

where ϕ denotes the Euler totient function, and ω the number of distinct prime divisors.

・ロト・西ト・ヨト・ヨー りへの

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest

Proposition ['25+, S., Zhao, Zhong]

Let C_n be the cyclic group of order n. The minimal size of a separating set of $\mathbb{C}[V_{reg}]^{C_n}$ consisting of monomials is

$$n+\sum_{\substack{d\mid n\\1< d}}\frac{2^{\omega(d)}-2}{2}\phi(d),$$

where ϕ denotes the Euler totient function, and ω the number of distinct prime divisors.

Proposition ['25+, S., Zhao, Zhong]

The size of a minimal separating set of $\mathbb{C}[V_{reg}]^{C_p^k}$ consisting of monomials is

$$|S| = p^k + \frac{(p^k-1)(p-2)}{2} + \sum_{i=2}^k \frac{(p^k-1)(p^k-p)\dots(p^k-p^{i-1})(p-1)^i}{(i+1)!}$$

Schefler Barna

Summarizing

Question

What is a sharp upper bound for the degrees of the separating invariants?

Answers for non-commutative groups: Answers for abelian groups:

- |*G*| < 32
- G has a cyclic subgroup of index 2

$$C_n^r$$

•
$$\operatorname{rank}(G) \leq 5$$

Question

What is a sharp lower bound for the size of a separating set?

•
$$\operatorname{rank}(G) = 1$$

elementary abelian p-groups

Schefler Barna

- M. Domokos, B. Schefler, The separating Noether number of small groups, https://doi.org/10.48550/arXiv.2412.08621
- B. Schefler, The separating Noether number of the direct sum of several copies of a cyclic group, Proc. Amer. Math. Soc. 153 (2025), 69–79.
- B. Schefler, The separating Noether number of abelian groups of rank two, J. Comb. Theory, Ser. A 209 (2025), Paper no. 105951.
- B., Schefler, K. Zhao, Q. Zhong, On the separating Noether number of finite abelian groups, Preprint, arXiv:2503.01296 [math.AC], (2025)
- B., Schefler, K. Zhao, Q. Zhong, On separating systems of polynomial invariants for finite abelian groups, Work in progress

Schefler Barna

Thank you for your attention!

Schefler Barna

Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest