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Eötvös Loránd University, Budapest
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Let ρ : G → GL(V ) be a finite dimensional complex representation of the finite group
G . Denote by x1, x2, ... , xn a basis of the dual space V ∗. From now we suppress ρ
from the notation and use only V to denote a representation.

The representation induces G -action on the coordinate ring C[V ] = C[x1, ..., xn] of V :

for g ∈ G and f ∈ C[V ] we have: g · f (x1, . . . , xn) = f (g−1 · x1, . . . , g−1 · xn)

A theorem of Noether states that the invariant subalgebra

C[V ]G := {f ∈ C[V ] : g · f = f for ∀g ∈ G}

is finitely generated by homogeneous polynomials of degree ≤ |G |.
One can raise two questions:

What is a sharp upper bound for the degree of the generators?

What is a sharp lower bound for the number of the generators?
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Separating sets of invariant algebras



Motivations and main questions Degree bounds for separating sets Small separating sets

Let ρ : G → GL(V ) be a finite dimensional complex representation of the finite group
G . Denote by x1, x2, ... , xn a basis of the dual space V ∗. From now we suppress ρ
from the notation and use only V to denote a representation.
The representation induces G -action on the coordinate ring C[V ] = C[x1, ..., xn] of V :

for g ∈ G and f ∈ C[V ] we have: g · f (x1, . . . , xn) = f (g−1 · x1, . . . , g−1 · xn)

A theorem of Noether states that the invariant subalgebra

C[V ]G := {f ∈ C[V ] : g · f = f for ∀g ∈ G}

is finitely generated by homogeneous polynomials of degree ≤ |G |.
One can raise two questions:

What is a sharp upper bound for the degree of the generators?

What is a sharp lower bound for the number of the generators?
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Definition

Let β(G ,V ) be the minimal positive integer d such that C[V ]G is generated by
homogeneous polynomials of degree at most d . The Noether number β(G ) of a finite
group G is

β(G ) := max
V

{β(G ,V ) : V is a finite dimensional representation of G}
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Example

Consider the dihedral group D4 and its two dimensional representation:

V : r 7→
[
i 0
0 −i

]
, s 7→

[
0 1
1 0

]
Then the algebra generators of C[V ]D4 are {xy , x4 + y4}.
(Check: (−ix)(iy) = xy , yx = xy and (−ix)4 + (ix)4 = x4 + y4, y4 + x4 = x4 + y4.)

For the three dimensional representation

V ′ : r 7→

 i 0 0
0 −i 0
0 0 1

 , s 7→

0 1 0
1 0 0
0 0 −1


the algebra generators of C[V ′]D4 are {z2, xy , x4 + y4, z(x4 − y4)}.
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A subset S ⊂ C[V ]G is called separating set if the following holds:

if for any v1 ̸= v2 ∈ V and f ∈ S we have f (v1) = f (v2), then h(v1) = h(v2) holds for
all h ∈ C[V ]G

For example: a generating set.

If G is a finite group, then a subset S ⊂ C[V ]G is a separating set if and only if:

Gv1 ̸= Gv2 implies that there exists f ∈ S such that f (v1) ̸= f (v2)

Again, we have the questions:

Questions

What is a sharp upper bound for the degrees of the separating invariants?

What is a sharp lower bound for the size of a separating set?
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Schefler Barna Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest
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Definition

Let βsep(G ,V ) be the minimal positive integer d such that C[V ]G contains a
separating set whose elements are homogeneous polynomials of degree at most d . The
separating Noether number βsep(G ) of a finite group G is

βsep(G ) := max
V

{βsep(G ,V ) : V is a finite dimensional representation of G}
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Properties

β(G ) ≤ |G |
β(G ,V ) ≤ β(G ,V ⊕ V ′)

β(G ,Vreg ) = β(G )

The same facts are also true for βsep. Moreover, we have:

βsep(G ) ≤ β(G )

βsep(G ,Vmf ) = βsep(G )

βsep(Cn) = β(Cn) = n. For any noncyclic finite group G : β(G ) < |G |
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Separating sets of invariant algebras



Motivations and main questions Degree bounds for separating sets Small separating sets

Properties

β(G ) ≤ |G |
β(G ,V ) ≤ β(G ,V ⊕ V ′)

β(G ,Vreg ) = β(G )

The same facts are also true for βsep. Moreover, we have:

βsep(G ) ≤ β(G )

βsep(G ,Vmf ) = βsep(G )

βsep(Cn) = β(Cn) = n. For any noncyclic finite group G : β(G ) < |G |
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Historical background

1916 - Noether: degree bound for generators of the invariant algebra

1990 - Schmid: β(G )

2010 - Kohls-Kraft: βsep(G )

2012-2018 -Cziszter-Domokos: systematic study of β(G )

2017 - Domokos: βsep(G ) for abelian groups
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The separating Noether number of finite non-abelian groups

Reminder

βsep(G ) = βsep(G ,Vmf )

Lemma

Let V1, . . . ,Vq be a complete list of representatives of the isomorphism classes of
irreducible representations of G . Then for every G there exists a positive integer
κ(G ) << q such that

βsep(G ) = max
J⊂{1,...,q}

|J|≤κ(G)

{βsep(G ,⊕j∈JVj)}.
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Proposition [25+, Domokos, S.]

The exact value of the separating Noether number is calculated for any group G with
|G | < 32.

Theorem [25+, Domokos, S.]

If G is a non-cyclic finite group with a cyclic subgroup of index 2, then

βsep(G ) =
1

2
|G |+

{
2 if G = Dic4m, m > 1;

1 otherwise.
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Separating Noether number of finite abelian groups

Let G0 be a subset of the (additively) written finite abelian group G . The elements of
the (multiplicatively written) free abelian monoid F(G0) with basis G0 are written as

S = g1 . . . gk =
∏
g∈G0

g vg (S).

Consider the submonoid

B(G0) = {
∏
g∈G0

g vg (S) ∈ F(G0) :
∑
g∈G0

vg (S)g = 0}

An element of B(G0) that can not be written as a product of two non-invertible
elements is called an atom.
The length of the element S =

∏
g∈G0

g vg (S) ∈ B(G0) is |S | =
∑

g∈G0
vg (S).

The maximal length of the atoms of the monoid B(G ) is called the Davenport
constant of the group G and is denoted by D(G ).
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Example

Let us have G = C2 ⊕ C2, and denote by {0, a, b, c} the elements of the group.
a+ a = 0, hence A1 = a2b0c0 ∈ B({a, b, c}) with |A1| = 2
b + b = 0, hence A2 = a0b2c0 ∈ B({a, b, c}) with |A2| = 2
c + c = 0, hence A3 = a0b0c2 ∈ B({a, b, c}) with |A3| = 2
a+ b + c = 0, hence A4 = a1b1c1 ∈ B({a, b, c}) with |A4| = 3
Of course, the maximal length of the atoms is 3, so D(G ) = 3.
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A finite abelian group G can be uniquely decomposed as G = Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr ,
where 2 ≤ n1 | n2 | · · · | nr . Here r is the rank of the group. Setting

D∗(G ) := 1 +
∑r

i=1(ni − 1),

we have the inequality D∗(G ) ≤ D(G ).
Question: For which abelian groups G do we have D∗(G ) = D(G )?

Theorems [’69, Olson]

If rank(G ) = 2 (i.e. G = Cn1 ⊕ Cn2 with 1 < n1 | n2), then D(G ) = n2 + n1 − 1.

If G is a finite abelian p-group, then D(G ) = 1 +
∑r

i=1(ni − 1) + 1.

Conjectures

For the direct sum C r
n = Cn ⊕ ...⊕ Cn (r copies) we have: D(C r

n) = 1 + (n − 1)r

If rank(G ) = 3 (i.e. G = Cn1 ⊕ Cn2 ⊕ Cn3), then D(G ) = n1 + n2 + n3 − 2.
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Fact

For a finite abelian group G , C[V ]G has a generating set consisting of monomials.

Corollary

For a finite abelian group G , the value of the Noether number coincides with the value
of the Davenport constant (the maximal length of an irreducible zero-sum sequence
over G ):

β(G ) = D(G )

Theorem [’17, Domokos]

For a finite abelian group G , the number βsep(G ) can be given with the language of
zero-sum sequences.
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Separating sets of invariant algebras



Motivations and main questions Degree bounds for separating sets Small separating sets

Theorem [’25+, S., Zhao, Zhong]

Let G = Cn1 ⊕ . . .⊕ Cnr with 1 < n1 | n2 . . . nr−1 | nr and r ≥ 2. Suppose
D(nsG ) = D∗(nsG ), where s = ⌊ r+1

2 ⌋. Then{
βsep(G ) = ns + ns+1 + . . .+ nr , if r is odd

βsep(G ) ≤ ns
p + ns+1 + . . .+ nr , if r is even,

where p is the minimal prime divisor of ns .
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Corollary [’25+, S., Zhao, Zhong]

Let G = Cn1 ⊕ . . .⊕ Cnr with 1 < n1 | n2 . . . nr−1 | nr and r ≥ 2, and let p be the
minimal prime divisor of ns . We have{

βsep(G ) = ns + ns+1 + . . .+ nr , if r is odd

βsep(G ) = ns
p + ns+1 + . . .+ nr , if r is even,

for the following infinite families of finite abelian groups:

groups of rank r ≤ 5,

p-groups,

groups of type C r
n .
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Schefler Barna Eötvös Loránd University, Budapest supervisor: Domokos Mátyás, Rényi Institute, Budapest
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Proposition [’08, Dufresne]

If V is a n-dimensional representation of G , then a separating set of size 2n + 1 exists.

Corollary [’24, Cahill, Contreras, Hip]

Let G be a finite abelian group of rank r and of order n. Then there exists a

separating set of C[Vreg]
G size

∑κ(G)+1
i=1

(n
i

)
consisting of monomials.
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Proposition [’25+, S., Zhao, Zhong]

Let Cn be the cyclic group of order n. The minimal size of a separating set of
C[Vreg]

Cn consisting of monomials is

n +
∑
d |n
1<d

2ω(d)−2
2 ϕ(d),

where ϕ denotes the Euler totient function, and ω the number of distinct prime divisors.

Proposition [’25+, S., Zhao, Zhong]

The size of a minimal separating set of C[Vreg]
C k
p consisting of monomials is

|S | = pk + (pk−1)(p−2)
2 +

∑k
i=2

(pk−1)(pk−p)...(pk−pi−1)(p−1)i

(i+1)!
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Separating sets of invariant algebras



Motivations and main questions Degree bounds for separating sets Small separating sets

Summarizing

Question

What is a sharp upper bound for the degrees of the separating invariants?

Answers for non-commutative groups:

|G | < 32

G has a cyclic subgroup of index 2

Answers for abelian groups:

C r
n

rank(G ) ≤ 5

p-groups

Question

What is a sharp lower bound for the size of a separating set?
- rank(G ) = 1

elementary abelian p-groups
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Thank you for your attention!
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