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Let p: G — GL(V) be a finite dimensional complex representation of the finite group
G. Denote by x1,x2, ... , x, a basis of the dual space V*. From now we suppress p
from the notation and use only V to denote a representation.
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Let p: G — GL(V) be a finite dimensional complex representation of the finite group
G. Denote by x1,x2, ... , x, a basis of the dual space V*. From now we suppress p
from the notation and use only V to denote a representation.

The representation induces G-action on the coordinate ring C[V] = C|[xq, ..., xp] of V:

for g € G and f € C[V] we have: g-f(x1,...,xn) =F(g - x1,...,87 1 xn)
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Let p: G — GL(V) be a finite dimensional complex representation of the finite group
G. Denote by x1,x2, ... , x, a basis of the dual space V*. From now we suppress p
from the notation and use only V to denote a representation.

The representation induces G-action on the coordinate ring C[V] = C|[xq, ..., xp] of V:

for g € G and f € C[V] we have: g-f(x1,...,xn) =F(g - x1,...,87 1 xn)
A theorem of Noether states that the invariant subalgebra
C[V]® :={feC[V]:g-f=f forVg € G}

is finitely generated by homogeneous polynomials of degree < |G]|.
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Let p: G — GL(V) be a finite dimensional complex representation of the finite group
G. Denote by x1,x2, ... , x, a basis of the dual space V*. From now we suppress p
from the notation and use only V to denote a representation.

The representation induces G-action on the coordinate ring C[V] = C|[xq, ..., xp] of V:

for g € G and f € C[V] we have: g-f(x1,...,xn) =F(g - x1,...,87 1 xn)

A theorem of Noether states that the invariant subalgebra
C[V]® :={feC[V]:g-f=f forVg € G}

is finitely generated by homogeneous polynomials of degree < |G]|.
One can raise two questions:

m What is a sharp upper bound for the degree of the generators?

m What is a sharp lower bound for the number of the generators?
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Definition
Let 3(G, V) be the minimal positive integer d such that C[V]® is generated by

homogeneous polynomials of degree at most d. The Noether number 3(G) of a finite
group G is

B(G) := m\z/LX{B(G, V) : V is a finite dimensional representation of G}
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Example
Consider the dihedral group D, and its two dimensional representation:
i 0 01
V: r— [0 i]’ S [1 0]

Then the algebra generators of C[V]P* are {xy, x* + y*}.
(Check: (—ix)(iy) = xy, yx = xy and (—ix)* + (ix)* = x* + y*, y* + x* = x* + y*)

Schefler Barna

Separating sets of invariant algebras



Motivations and main questions
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Example

Consider the dihedral group D, and its two dimensional representation:
i 0 01
V. r|—>[0 i]’ s»—>{1 0]

Then the algebra generators of C[V]P* are {xy, x* + y*}.
(Check: (—ix)(iy) = xy, yx = xy and (—ix)* + (ix)* = x* + y*, y* + x* = x* + y*)
For the three dimensional representation

i 0 0 01 0
Vi res |0 =i 0|, s— |1 0 0
0 0 1 00 -1

the algebra generators of C[V']P* are {22, xy, x* + y*, z(x* — y")}.
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A subset S C C[V]€ is called separating set if the following holds:

if for any vi # v € V and f € S we have f(v;) = f(w2), then h(v1) = h(v2) holds for
all he C[V]®

For example: a generating set.
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A subset S C C[V]€ is called separating set if the following holds:

if for any vi # v € V and f € S we have f(v;) = f(w2), then h(v1) = h(v2) holds for
all he C[V]®

For example: a generating set.
If G is a finite group, then a subset S C C[V]€ is a separating set if and only if:

Gvi; # Gvp implies that there exists f € S such that f(vy) # f(v2)
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A subset S C C[V]€ is called separating set if the following holds:

if for any vi # v € V and f € S we have f(v;) = f(w2), then h(v1) = h(v2) holds for
all he C[V]®

For example: a generating set.
If G is a finite group, then a subset S C C[V]€ is a separating set if and only if:

Gvi; # Gvp implies that there exists f € S such that f(vy) # f(v2)

Again, we have the questions:

Questions
m What is a sharp upper bound for the degrees of the separating invariants?

m What is a sharp lower bound for the size of a separating set?
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Definition

Let Bsep(G, V) be the minimal positive integer d such that C[V]® contains a
separating set whose elements are homogeneous polynomials of degree at most d. The
separating Noether number Bsc,(G) of a finite group G is

Bsep(G) = m\z/xx{ﬂsep(G , V) : V is a finite dimensional representation of G}
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m 5(G) <G|
m 5(G,V)<B(G,Va V)
m B(G, Vreg) = B(G)
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m 5(G) <G|
= B(G,V) < B(G, Ve V)
m 3(G, Vieg) = B(G)
The same facts are also true for Bsp. Moreover, we have:
® Bep(G) < B(G)
u /Bsep(Gy me) = /Bsep(G)
Bsep(Cn) = B(Cn) = n. For any noncyclic finite group G: 3(G) < |G]|
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Historical background

1916 - Noether: degree bound for generators of the invariant algebra
1990 - Schmid: G(G)

2010 - Kohls-Kraft: Seep(G)

2012-2018 -Cziszter-Domokos: systematic study of 3(G)

2017 - Domokos: fsep(G) for abelian groups
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The separating Noether number of finite non-abelian groups

/Bsep(G) — ﬁsep(Gv me)

Lemma

Let V1,..., Vy be a complete list of representatives of the isomorphism classes of
irreducible representations of G. Then for every G there exists a positive integer
k(G) << @ such that

/BSGP(G) = Jcr{ri?.)iq}{ﬂsep(cv Djey VJ)}
[JI<K(G)
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Proposition [25+, Domokos, S.]

The exact value of the separating Noether number is calculated for any group G with
|G| < 32.
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Proposition [25+, Domokos, S.]

The exact value of the separating Noether number is calculated for any group G with
|G| < 32.

Theorem [25+, Domokos, S.]
If G is a non-cyclic finite group with a cyclic subgroup of index 2, then

2 if G = Dicam, m> 1;

1 otherwise.

1
Boen(G) = 2|G|+{
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Separating Noether number of finite abelian groups

Let Gy be a subset of the (additively) written finite abelian group G. The elements of
the (multiplicatively written) free abelian monoid F(Gp) with basis Gg are written as

S=g...ec= |] g%
g€Go
Consider the submonoid

B(Go) = { ]] &> € F(Go): Y vg(S)g =0}

g€Gy g€Gy
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Separating Noether number of finite abelian groups

Let Gy be a subset of the (additively) written finite abelian group G. The elements of
the (multiplicatively written) free abelian monoid F(Gp) with basis Gg are written as

S=g1...8k= H g"g(s).
g€Go

Consider the submonoid

B(Go) = { ] & € F(Go): > vg(S)g =0}
€ g€Go
An element of B(Gp) that can not be written as a product of two non-invertible
elements is called an atom.
The length of the element S = [[, ¢, g's(%) € B(Gp) is |S| = > geG, VelS)
The maximal length of the atoms of the monoid B(G) is called the Davenport
constant of the eroup G and is denoted bv D(G).
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Example

Let us have G = G, @ (, and denote by {0, a, b, c} the elements of the group.
a+a=0, hence Ay = a°b°c? € B({a, b, c}) with |A;| =2

b+ b =0, hence Ay = a°b?c® € B({a, b, c}) with |Ay| =2

c+c =0, hence A; = a°b%c? € B({a, b, c}) with |A3| =2

a+b+c=0, hence Ay = a'b'c! € B({a, b, c}) with |A4] =3

Of course, the maximal length of the atoms is 3, so D(G) = 3.
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A finite abelian group G can be uniquely decomposed as G = C,, & C,, & --- @ C,,,
where 2 < ny | np | --- | n,. Here r is the rank of the group. Setting

D*(G) := 143 iy (ni — 1),

we have the inequality D*(G) < D(G).
Question: For which abelian groups G do we have D*(G) = D(G)?
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A finite abelian group G can be uniquely decomposed as G = C,, & C,, & --- @ C,,,
where 2 < ny | np | --- | n,. Here r is the rank of the group. Setting

D*(G) := 143 iy (ni — 1),

we have the inequality D*(G) < D(G).
Question: For which abelian groups G do we have D*(G) = D(G)?

Theorems ['69, Olson]

m If rank(G) =2 (i.e. G = Cp @ Cp, with 1 < ny | n2), then D(G) = ny + np — 1.
m If G is a finite abelian p-group, then D(G) =1+ > ;(ni — 1)+ 1.

Conjectures
m For the direct sum C; = C, @ ... & C, (r copies) we have: D(C/) =1+ (n—1)r
m If rank(G) =3 (i.e. G=Cp & Cp, ® Cpy,), then D(G) = ny + no + n3 — 2.
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For a finite abelian group G, C[V]® has a generating set consisting of monomials.

Corollary

For a finite abelian group G, the value of the Noether number coincides with the value
of the Davenport constant (the maximal length of an irreducible zero-sum sequence
over G):
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For a finite abelian group G, C[V]® has a generating set consisting of monomials.

Corollary

For a finite abelian group G, the value of the Noether number coincides with the value
of the Davenport constant (the maximal length of an irreducible zero-sum sequence
over G):

Theorem ['17, Domokos]

For a finite abelian group G, the number s, (G) can be given with the language of
Zero-sum sequences.
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Theorem ['25+, S., Zhao, Zhong]

Let G=Cp, ®...®Cp, with1<ny|ny...n—1|n,and r>2. Suppose
D(nsG) = D*(nsG), where s = [ 51|, Then

Bsep(G) = ns + nsy1+ ...+ n,, if ris odd
Bsep(G) < % +nsi1+...+n,, if riseven,

where p is the minimal prime divisor of ns.
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Corollary ['25+, S., Zhao, Zhong]

Let G=Cp, ®...®Cp, withl<ny|ny...n—1]|n,and r>2 and let p be the
minimal prime divisor of ns. We have

Bsep(G) = ns + nsy1+ ...+ n,, if ris odd
Bsep(G) = % + nsi1+ ...+ n,, if riseven,

for the following infinite families of finite abelian groups:
m groups of rank r <5,
B p-groups,
m groups of type C/.
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Proposition ['08, Dufresne]

If V is a n-dimensional representation of G, then a separating set of size 2n + 1 exists.
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Proposition ['08, Dufresne]

If V is a n-dimensional representation of G, then a separating set of size 2n + 1 exists.

Corollary ['24, Cahill, Contreras, Hip]

Let G be a finite abelian group of rank r and of order n. Then there exists a

separating set of C[V;g]© size Z”(G )+ () consisting of monomials.
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Proposition ['25+, S., Zhao, Zhong]

Let C, be the cyclic group of order n. The minimal size of a separating set of
C[Vieg] " consisting of monomials is

w(d)
n+ T ED=24(d),
d|n
1<d

where ¢ denotes the Euler totient function, and w the number of distinct prime divisors.
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Proposition ['25+, S., Zhao, Zhong]

Let C, be the cyclic group of order n. The minimal size of a separating set of
C[Vieg] " consisting of monomials is

w(d) _
n+ le%fﬁ(d)a
d|n

1<d

where ¢ denotes the Euler totient function, and w the number of distinct prime divisors.

Proposition ['25+, S., Zhao, Zhong]

The size of a minimal separating set of (C[Vreg]cp consisting of monomials is

k_ _ k__ k__ k__ i—1 _1)i
S| = p¥ + (p 1%(p 2) +Zf§:2 (P =1)(p p)(.i--+(f)! p' ) (p—1)
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Summarizing

What is a sharp upper bound for the degrees of the separating invariants?

Answers for non-commutative groups:  Answers for abelian groups:

m |G| <32 m C
m G has a cyclic subgroup of index 2~ m rank(G) <5
m p-groups

What is a sharp lower bound for the size of a separating set?
- m rank(G) =1
m elementary abelian p-groups

Schefler Barna

Separating sets of invariant algebras



Small separating sets
000000

[ M. Domokos, B. Schefler, The separating Noether number of small groups,
https://doi.org/10.48550/arXiv.2412.08621

B. Schefler, The separating Noether number of the direct sum of several copies of
a cyclic group, Proc. Amer. Math. Soc. 153 (2025), 69-79.

B

[§ B. Schefler, The separating Noether number of abelian groups of rank two, J.
Comb. Theory, Ser. A 209 (2025), Paper no. 105951.
3
3

B., Schefler, K. Zhao, Q. Zhong, On the separating Noether number of finite
abelian groups, Preprint, arXiv:2503.01296 [math.AC], (2025)

B., Schefler, K. Zhao, Q. Zhong, On separating systems of polynomial invariants
for finite abelian groups, Work in progress

Schefler Barna

Separating sets of invariant algebras



Small separating sets
000000

Thank you for your attention!
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