Infinite direct-sum decompositions via a monoid-theoretical approach

Daniel Smertnig

joint work with Zahra Nazemian (University of Graz)

Conference on Rings and Polynomials, Graz, July 18, 2024

Let R be a ring (unital, associative).

Then

 $V(R) = \{ [M] : M_R \text{ finitely generated projective } \}$

- is a monoid with $[M] + [N] = [M \oplus N]$.
 - ▶ V(R) is commutative, reduced $([M] + [N] = 0 \Rightarrow [M] = [N] = 0)$, and has an order-unit (for every [M] there exists [N] and $k \ge 0$ such that [M] + [N] = k[R]).
 - Finite direct sum-decompositions translate into indecomposables translate into factorizations into irreducibles (atoms) in V(R):

 $M \cong U_1 \oplus \dots \oplus U_n \quad \Leftrightarrow \quad [M] = [U_1] + \dots + [U_n].$

Theorem (Bergman, Bergman–Dicks '70s)

For every reduced commutative monoid H with order-unit, there exists a hereditary algebra R such that $V(R) \cong H$.

Example

Does there exist a ring R having a module M that has only two factorizations into irreducibles, one with 7 summands, one with 2025?

Yes, because in the numerical monoid $(7, 2025) \subseteq \mathbb{N}_0$,

$$2025 \cdot 7 = \underbrace{2025 + \dots + 2025}_{7 \times} = \underbrace{7 + \dots + 7}_{2500 \times}.$$

$V^*(R)$ is the monoid of countably generated projective modules

Recently studied by Álvarez, Herbera, Příhoda, and R. Wiegand.

C.g. projectives are closed under **countable** \oplus , but this structure is missing in the monoid $V^*(R)$.

Countable \oplus induces an operation on $V^*(R)$. Can we reasonably describe it by axioms?

Let κ be an infinite cardinal.

Definition

A κ -monoid is a set H together with an element $0 \in H$ and a map $\Sigma: H^{\kappa} \to H$ such that the following conditions are satisfied.

- 1. If $x = (x_i)_{i \in \kappa} \in H^{\kappa}$ with $x_i = 0$ for all $i \neq 0$, then $\sum_{i \in \kappa} x_i = x_0$.
- 2. If $(x_{i,j})_{i,j\in\kappa} \in H^{\kappa \times \kappa}$ and $\pi: \kappa \times \kappa \to \kappa$ is a bijection, then

$$\sum_{i\in\kappa}\sum_{j\in\kappa}x_{i,j}=\sum_{k\in\kappa}x_{\pi^{-1}(k)}.$$

- Every κ -monoid is a λ -monoid for $\lambda \leq \kappa$ (and a monoid).
- Every κ -monoid is a commutative monoid.
- Notation $\sum_{i \in \kappa} x_i \coloneqq \Sigma((x_i)_{i \in \kappa})$.

1. $\mathbb{N}_0 \cup \{\infty\}$ with

 $\sum_{i \in \kappa} x_i = \begin{cases} x_1 + \dots + x_{n_0} & \text{if } x_i \in \mathbb{N}_0 \text{ and } x_n = 0 \text{ for } n > n_0 \\ \infty & \text{otherwise.} \end{cases}$

("trivial extension")

- 2. $\mathbb{R}_{\geq 0} \cup \{\infty\}$ with trivial extension (here $\sum_{n=1}^{\infty} \frac{1}{n^2} = \infty$).
- 3. $\mathbb{R}_{\geq 0} \cup \{\infty\}$ with operation induced from convergent series (here $\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2/6$).
- 4. Cardinals $\{\lambda : \lambda \leq \kappa\}$ with cardinal arithmetic.
- 5. $V^{\kappa}(R)$, projective modules generated by $\leq \kappa$ -many elements: $V^{\aleph_0}(R) = V^*(R)$.
- 6. V(C) with C a set of isomorphism classes of R-modules closed under \in , \cong , and direct sums over index sets of cardinality $\leq \kappa$.

Lemma

Every κ -monoid is reduced.

Proof by Eilenberg swindle.

Suppose a + b = 0. Show: a = b = 0.

 $0 = \aleph_0(a+b) = \aleph_0 a + \aleph_0 b = a + \aleph_0 a + \aleph_0 b = a + \aleph_0(a+b) = a + 0 = a.$

Assume $V^{\aleph_0}(R)$ is generated by V(R), that is, every projective *R*-module is a direct sum of finitely generated modules. (E.g., *R* hereditary).

Suppose

 $X_1 \oplus X_2 \oplus X_3 \oplus \cdots \cong Y_1 \oplus Y_2 \oplus Y_3 \oplus \cdots \qquad (X_i, Y_j \text{ f.g.})$

 $\Rightarrow \exists n_1 \text{ such that } \underbrace{U_0} \coloneqq X_1 \subseteq Y_1 \oplus \dots \oplus Y_{n_1}. \\ \Rightarrow X_1 \in Y_1 \oplus \dots \oplus Y_{n_1} \Rightarrow Y_1 \oplus \dots \oplus Y_{n_1} = X_1 \oplus \underbrace{V_1}.$

Same game with V_1 : $V_1 \in X_2 \oplus \cdots \oplus X_{m_1}$, $V_1 \oplus U_1 = X_2 \oplus \cdots \oplus X_{m_1}$.

Next: $U_1 \oplus V_2 = Y_{n_1+1} \oplus \cdots \oplus Y_{n_2}$, and so on.

Definition

Let X be a monoid.

1. Families $(x_i)_{i \in \mathbb{N}_0}$ and $(y_j)_{j \in \mathbb{N}_0}$ in X are (\aleph_0^-) -braided if there exist indexed partitions $(I_\mu)_{\mu \in \mathbb{N}_0}$ and $(J_\mu)_{\mu \in \mathbb{N}_0}$ of \mathbb{N}_0 with $|I_\mu|$, $|J_\mu|$ finite, and families $(u_\mu)_{\mu \in \mathbb{N}_0}$ and $(v_\mu)_{\mu \in \mathbb{N}_0}$ in X such that $v_0 = 0$, and

$$\sum_{i \in I_{\mu}} x_i = v_{\mu} + u_{\mu}, \quad \text{and} \quad \sum_{j \in J_{\mu}} y_j = v_{\mu+1} + u_{\mu} \quad \text{for all } \mu \in \mathbb{N}_0.$$

2. Let H be an \aleph_0 -monoid an X a submonoid. Then H is (\aleph_0^-) -braided over X if $H = \langle X \rangle_{\aleph_0}$, and all families $(x_i)_{i \in \mathbb{N}_0}$, $(y_j)_{j \in \mathbb{N}_0}$ in X with $\sum_{i \in \mathbb{N}_0} x_i = \sum_{j \in \mathbb{N}_0} y_j$ are \aleph_0^- -braided.

Braiding property

$(x_i)_{i\in\kappa}$	I_0		I_1	I_2		•••	
	u_0	v_1	u_1	v_2	u_2	v_3	•••
$(y_j)_{j\in\kappa}$	J_0		J_1		J_2		•••

Theorem (Nazemian-S. '24)

- 1. If every projective module is a direct sum of f.g. projective ones, then $V^{\aleph_0}(R)$ is \aleph_0^- -braided over V(R).
- 2. In general, $\langle V(R) \rangle_{\aleph_0} \subseteq \mathsf{V}^{\aleph_0}(R)$ is \aleph_0^- -braided over V(R).
- 3. $V^{\kappa}(R)$ is λ^{-} -braided over $V^{\lambda}(R)$ for $\kappa > \lambda > \aleph_{0}$.

Theorem (Nazemian-S. '24)

Let C be a class of modules, closed under **countable** \oplus , \in , \cong and C_{fg} the class of finitely generated submodules.

If $V^{\aleph_0}(\mathcal{C}) = \langle V(\mathcal{C}_{fg}) \rangle_{\aleph_0}$, then $V^{\aleph_0}(\mathcal{C})$ is \aleph_0^- -braided over $V(\mathcal{C}_{fg})$.

Definition (Universal Property)

Let H be a monoid. An \aleph_0 -monoid \widehat{H} is a **universal** \aleph_0 -extension of H if there is a monoid homomorphism $\iota: H \to \widehat{H}$ satisfying: for every monoid homomorphism $\varphi: H \to K$ to a \aleph_0 -monoid K, there exists a unique \aleph_0 -homomorphism $\widehat{\varphi}: \widehat{H} \to K$ such that $\varphi = \widehat{\varphi} \circ \iota$.

- Unique up to unique isomorphism.
- Existence is non-trivial but can be proven.

Theorem (Nazemian-S. '24)

Let H be a \aleph_0 -monoid and X be a submonoid. TFAE

- 1. *H* is \aleph_0^- -braided over *X*.
- 2. *H* is the universal \aleph_0 -extension of *X*.

Similar concepts for κ -monoids as extensions of λ^- -monoids with $\lambda \leq \kappa$ a regular cardinal.

Example

- If $X = \mathbb{N}_0$ then $H = \mathbb{N}_0 \cup \{\infty\}$ is \aleph_0^- -braided over X.
- If $X = \mathbb{R}_{\geq 0}$, then none of the two \aleph_0 -monoid structures we saw on $\mathbb{R}_{\geq 0} \cup \{\infty\}$ is \aleph_0^- -braided over X. The following is:

 $H \cong \mathbb{R}_{\geq 0} \cup \widetilde{\mathbb{R}}_{>0} \cup \{\infty\}.$

Every projective module is a direct sum of countably generated projective modules (Kaplansky).

Corollary

Let R be a ring.

- If every projective module is a direct sum of finitely generated projective modules (e.g., if R is hereditary), then V^{ℵ0}(R) is the universal ℵ0-extension of V(R).
- 2. In any case, $V^{\kappa}(R)$ for $\kappa > \aleph_0$ the universal κ -extension of $V^{\aleph_0}(R)$.

 $V^{\kappa}(R)$ is fully determined by $V^{\aleph_0}(R)$!

Corollary

- 1. The κ -monoids realizable as $V^{\kappa}(R)$ with R a hereditary ring are precisely the universal κ -extensions of reduced commutative monoids with order-unit.
- 2. The κ -monoids realizable as $V^{\kappa}(R)$ for arbitrary rings R are precisely the universal κ -extensions of the **realizable** \aleph_0 -monoids.

Open Question: Which \aleph_0 -monoids appear as $V^{\aleph_0}(R)$ for some ring?

$\mathsf{V}^*(R)$ and $\mathsf{V}^\kappa(R)$

Herbera and Příhoda fully characterized $V^*(R)$ for semilocal noetherian commutative rings as submonoids of $(\mathbb{N}_0 \cup \{\infty\})^k$ defined by **linear equations** and **linear inequalities**.

V(R) does not fully determine $V^{\aleph_0}(R)$, e.g., x = y and 2x = x + y both define the submonoid

 $\{(a,a):a\in\mathbb{N}_0\}\subseteq\mathbb{N}_0^2,$

but in $(\mathbb{N}_0 \cup \{\infty\})^2$, the first equation defines

 $\{(a,a):a\in\mathbb{N}_0\cup\{\infty\}\},\$

and the second

$$\{(a,a):a\in\mathbb{N}_0\}\cup\{(\infty,a):a\in\mathbb{N}_0\}.$$

Corollary

 $\mathsf{V}^{\aleph_0}(R)$ fully determines $\mathsf{V}^{\kappa}(R)$ — we can use same equalities/inequalities to define it!

- 1. With κ -monoids we can model infinite direct sums on the monoid side.
- 2. Direct-sums give rise to the non-trivial **braiding property** that corresponds to **universal property** for κ -extensions.
- In several interesting cases therefore V(R) (or at least V^ℵ₀(R)) fully determines V^κ(R).