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Motivation

Let R be a ring (unital, associative).

Then
V(R) = { [M] ∶MR finitely generated projective}

is a monoid with [M] + [N] = [M ⊕N].

▸ V(R) is commutative, reduced ([M] + [N] = 0⇒ [M] = [N] = 0), and has an
order-unit (for every [M] there exists [N] and k ≥ 0 such that
[M] + [N] = k[R]).

▸ Finite direct sum-decompositions translate into indecomposables translate into
factorizations into irreducibles (atoms) in V(R):

M ≅ U1 ⊕⋯⊕Un ⇔ [M] = [U1] +⋯ + [Un].



Motivation

Theorem (Bergman, Bergman–Dicks ’70s)

For every reduced commutative monoid H with order-unit, there exists a hereditary
algebra R such that V (R) ≅H.

Example

Does there exist a ring R having a module M that has only two factorizations into
irreducibles, one with 7 summands, one with 2025?

Yes, because in the numerical monoid ⟨7,2025⟩ ⊆ N0,

2025 ⋅ 7 = 2025 +⋯ + 2025
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

7×
= 7 +⋯ + 7
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2500×
.



Motivation

V ∗(R) is the monoid of countably generated projective modules

Recently studied by Álvarez, Herbera, Př́ıhoda, and R. Wiegand.

C.g. projectives are closed under countable ⊕, but this structure is missing in the
monoid V ∗(R).

Countable ⊕ induces an operation on V ∗(R). Can we reasonably describe it by
axioms?



κ-monoids

Let κ be an infinite cardinal.

Definition

A κ-monoid is a set H together with an element 0 ∈H and a map Σ∶Hκ →H such
that the following conditions are satisfied.

1. If x = (xi)i∈κ ∈Hκ with xi = 0 for all i ≠ 0, then ∑i∈κ xi = x0.
2. If (xi,j)i,j∈κ ∈Hκ×κ and π∶κ × κ→ κ is a bijection, then

∑
i∈κ
∑
j∈κ

xi,j =∑
k∈κ

xπ−1(k).

▸ Every κ-monoid is a λ-monoid for λ ≤ κ (and a monoid).

▸ Every κ-monoid is a commutative monoid.

▸ Notation ∑i∈κ xi ∶= Σ((xi)i∈κ).



κ-monoids: Examples

1. N0 ∪ {∞} with

∑
i∈κ

xi =
⎧⎪⎪⎨⎪⎪⎩

x1 +⋯ + xn0 if xi ∈ N0 and xn = 0 for n > n0

∞ otherwise.

(”trivial extension”)

2. R≥0 ∪ {∞} with trivial extension (here ∑∞n=1 1
n2 =∞).

3. R≥0 ∪ {∞} with operation induced from convergent series (here ∑∞n=1 1
n2 = π2/6).

4. Cardinals {λ ∶ λ ≤ κ} with cardinal arithmetic.

5. Vκ(R), projective modules generated by ≤ κ-many elements: Vℵ0(R) = V ∗(R).
6. V(C) with C a set of isomorphism classes of R-modules closed under A, ≅, and

direct sums over index sets of cardinality ≤ κ.



Basic properties

Lemma

Every κ-monoid is reduced.

Proof by Eilenberg swindle.

Suppose a + b = 0. Show: a = b = 0.

0 = ℵ0(a + b) = ℵ0a + ℵ0b = a + ℵ0a + ℵ0b = a + ℵ0(a + b) = a + 0 = a.



Braiding property

Assume Vℵ0(R) is generated by V(R), that is, every projective R-module is a direct
sum of finitely generated modules. (E.g., R hereditary).

Suppose

X1 ⊕X2 ⊕X3 ⊕⋯ ≅ Y1 ⊕ Y2 ⊕ Y3 ⊕⋯ (Xi, Yj f.g.)

⇒ ∃n1 such that U0 ∶=X1 ⊆ Y1 ⊕⋯⊕ Yn1 .
⇒ X1 A Y1 ⊕⋯⊕ Yn1 ⇒ Y1 ⊕⋯⊕ Yn1 =X1 ⊕ V1.

Same game with V1: V1 A X2 ⊕⋯⊕Xm1 , V1 ⊕U1 =X2 ⊕⋯⊕Xm1 .

Next: U1 ⊕ V2 = Yn1+1 ⊕⋯⊕ Yn2 , and so on.



Braiding property

Definition

Let X be a monoid.

1. Families (xi)i∈N0 and (yj)j∈N0 in X are (ℵ−0)-braided if there exist indexed
partitions (Iµ)µ∈N0 and (Jµ)µ∈N0 of N0 with ∣Iµ∣, ∣Jµ∣ finite, and families (uµ)µ∈N0

and (vµ)µ∈N0 in X such that v0 = 0, and

∑
i∈Iµ

xi = vµ + uµ, and ∑
j∈Jµ

yj = vµ+1 + uµ for all µ ∈ N0.

2. Let H be an ℵ0-monoid an X a submonoid. Then H is (ℵ−0)-braided over X if
H = ⟨X⟩ℵ0 , and all families (xi)i∈N0 , (yj)j∈N0 in X with ∑i∈N0

xi = ∑j∈N0
yj are

ℵ−0 -braided.



Braiding property

Theorem (Nazemian-S. ’24)

1. If every projective module is a direct sum of f.g. projective ones, then Vℵ0(R) is
ℵ−0 -braided over V (R).

2. In general, ⟨V (R)⟩ℵ0 ⊆ Vℵ0(R) is ℵ−0 -braided over V (R).
3. Vκ(R) is λ−-braided over Vλ(R) for κ > λ > ℵ0.

Theorem (Nazemian-S. ’24)

Let C be a class of modules, closed under countable ⊕, A, ≅ and Cfg the class of
finitely generated submodules.

If Vℵ0(C) = ⟨V(Cfg)⟩ℵ0 , then Vℵ0(C) is ℵ−0 -braided over V(Cfg).



Universal ℵ0-extensions

Definition (Universal Property)

Let H be a monoid. An ℵ0-monoid Ĥ is a universal ℵ0-extension of
H if there is a monoid homomorphism ι∶H → Ĥ satisfying: for every
monoid homomorphism φ∶H →K to a ℵ0-monoid K, there exists a
unique ℵ0-homomorphism φ̂∶ Ĥ →K such that φ = φ̂ ○ ι.

H Ĥ

K.

ι

φ
φ̂

▸ Unique up to unique isomorphism.

▸ Existence is non-trivial but can be proven.

Theorem (Nazemian-S. ’24)

Let H be a ℵ0-monoid and X be a submonoid. TFAE

1. H is ℵ−0 -braided over X.

2. H is the universal ℵ0-extension of X.

Similar concepts for κ-monoids as extensions of λ−-monoids with λ ≤ κ a regular
cardinal.



Example

▸ If X = N0 then H = N0 ∪ {∞} is ℵ−0 -braided over X.

▸ If X = R≥0, then none of the two ℵ0-monoid structures we saw on R≥0 ∪ {∞} is
ℵ−0 -braided over X. The following is:

H ≅ R≥0 ∪ R̃>0 ∪ {∞}.



Projective modules

Every projective module is a direct sum of countably generated projective modules
(Kaplansky).

Corollary

Let R be a ring.

1. If every projective module is a direct sum of finitely generated projective modules
(e.g., if R is hereditary), then Vℵ0(R) is the universal ℵ0-extension of V(R).

2. In any case, Vκ(R) for κ > ℵ0 the universal κ-extension of Vℵ0(R).

Vκ(R) is fully determined by Vℵ0(R)!



Realizability

Corollary

1. The κ-monoids realizable as Vκ(R) with R a hereditary ring are precisely the
universal κ-extensions of reduced commutative monoids with order-unit.

2. The κ-monoids realizable as Vκ(R) for arbitrary rings R are precisely the universal
κ-extensions of the realizable ℵ0-monoids.

Open Question: Which ℵ0-monoids appear as V ℵ0(R) for some ring?



V∗(R) and Vκ(R)

Herbera and Př́ıhoda fully characterized V∗(R) for semilocal noetherian commutative
rings as submonoids of (N0 ∪ {∞})k defined by linear equations and linear
inequalities.

V(R) does not fully determine Vℵ0(R), e.g., x = y and 2x = x + y both define the
submonoid

{(a, a) ∶ a ∈ N0} ⊆ N2
0,

but in (N0 ∪ {∞})2, the first equation defines

{(a, a) ∶ a ∈ N0 ∪ {∞}},

and the second
{(a, a) ∶ a ∈ N0} ∪ {(∞, a) ∶ a ∈ N0}.

Corollary

Vℵ0(R) fully determines Vκ(R) — we can use same equalities/inequalities to define it!



Conclusion

1. With κ-monoids we can model infinite direct sums on the monoid side.

2. Direct-sums give rise to the non-trivial braiding property that corresponds to
universal property for κ-extensions.

3. In several interesting cases therefore V(R) (or at least Vℵ0(R)) fully determines
Vκ(R).


