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Abstract

Let R be a unital commutative ring and I ⊆ R a fixed ideal. Just like local

cohomology R-modules with respect to I , I -reduced R-modules form a

notion which allows the study of properties of R-modules in relation to the

ideal I . We demonstrate the versatility of I -reduced R-modules. For

instance, they have applications in category theory, in torsion theory and in

homological algebra - more specifically, in the study of local cohomology

modules. We also propose some research problems.
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A. The introduction

Reduced modules

A ring R is reduced if for all ideals I of R, I 2 = 0 implies that I = 0.

An R-module M is reduced if for all ideals I of R, and all m ∈ M,

I 2m = 0 implies that Im = 0.

I -reduced modules

For a fixed ideal I of R, we say that an R-module M is

I -reduced if for all m ∈ M, I 2m = 0 implies that Im = 0.

If M is I -reduced for some ideal I of R, we say that M is locally

reduced.

All reduced modules are locally reduced but not conversely.
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Introduction continued

So, an R-module is reduced if it is I -reduced for all ideals I of R.

Reduced modules were introduced by Lee and Zhou in [5].

Locally reduced modules have been studied in [4, 7, 8, 9] among

others.
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Examples

For any R-module M and any ideal I of R, the following R-modules are

I -reduced (they need not be reduced)

M/IM

(0 :M I ) := {m ∈ M : Im = 0}.

This demonstrates that I -reduced modules form a large class of modules.

A ring R is reduced (resp. I -reduced) iff it is reduced (resp.

I -reduced) as an R-module.

Any projective module over an I -reduced ring is I -reduced.

A torsionfree module is reduced.

David Ssevviiri (Makerere University) Versatility of locally reduced modules

Conference on Rings and Polynomials in Graz July 14 - 19, 2025

6 / 46



B. Application in category theory

The entry point into category theory is via the I -torsion functor.

The I -torsion functor ΓI associates to every R-module M, a

submodule

ΓI (M) := {m ∈ M : I km = 0 for some k ∈ Z+}.

ΓI (M) =
⋃

k∈Z+

(0 :M I k) ∼= lim−→
k

HomR(R/I
k ,M)

This functor can be used to characterise I -reduced R-modules.
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Equivalent statements for I -reduced modules

Proposition 2.1

For any R-module M and an ideal I of R, the following statements are

equivalent:

1 M is I -reduced,

2 (0 :M I ) = (0 :M I 2),

3 HomR(R/I ,M) ∼= HomR(R/I
2,M),

4 ΓI (M) ∼= HomR(R/I ,M),

5 IΓI (M) = 0.
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I -coreduced modules and coreduced modules

I -coreduced modules

An R-module M is I -coreduced if I 2M = IM.

Coreduced modules

An R-module M is coreduced if it is I -coreduced for all ideals I of R.

1 Divisible modules are coreduced.

2 A functor dual ΓI is the I -adic completion functor. It is given by

ΛI (M) := lim←−
k

(R/I k ⊗R M).

3 It is used to characterise I -coreduced modules, a notion dual to

I -reduced modules.
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Equivalent statements for I -coreduced modules

Proposition 2.2

For any R-module M and an ideal I of R, the following statements are

equivalent:

1 M is I -coreduced,

2 R/I ⊗M ∼= R/I 2 ⊗M,

3 ΛI (M) ∼= R/I ⊗M,

4 IΛI (M) = 0.
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Greenlees-May Duality

The functors ΓI and ΛI are in general not adjoint.

In the setting of derived categories, when I is a weakly proregular

ideal, we have the Greenlees-May Duality (GM Duality for short).

Theorem 2.1 (Tarrio, Lopez and Lipman)

Let I be a weakly proregular ideal of a ring R and M,N ∈ D(R). Then

there is a natural isomorphism in D(R) given by

RHomR(RΓI (M),N) ∼= RHomR(M,LΛI (N)).

Local cohomology is derived left adjoint to local homology.
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GM Duality in R-Mod

Theorem 2.2 (D. Ssevviiri, 2023)

For any ideal I of a ring R,

1 The functor

ΓI : (R-Mod)I -red → (R-Mod)I -cor is idempotent and for any

M ∈ (R-Mod)I -red, ΓI (M) ∼= HomR(R/I ,M).

2 The functor ΛI : (R-Mod)I -cor → (R-Mod)I -red is idempotent and for

any M ∈ (R-Mod)I -cor, ΛI (M) ∼= R/I ⊗M.

3 For any N ∈ (R-Mod)I -red and M ∈ (R-Mod)I -cor,

HomR(ΛI (M),N) ∼= HomR(M, ΓI (N)).

In this setting, ΛI is left-adjoint to ΓI .
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MGM Equivalence

An R-module M is I -torsion if ΓI (M) = M.

An R-module M is I -complete if ΛI (M) ∼= M.

A collection of all I -torsion R-modules is an abelian category.

A collection of all I -complete R-modules need NOT BE an abelian

category.

So, these two subcategories are not equivalent in general.

In the derived category setting with I weakly proregular, we get an

equivalence.

This is the so called Matlis-Greenlees-May Equivalence (MGM

Equivalence for short).
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MGM Equivalence continued

Theorem 2.3 (Porta, Shaul, Yekutieli, 2014)

Let R be a ring, and let I be a weakly proregular ideal in it.

1 For any M ∈ D(R),

RΓI (M) ∈ D(R)I -tor and LΛI (M) ∈ D(R)I -com.

2 The functor

RΓI : D(R)I -com → D(R)I -tor

is an equivalence, with quasi-inverse LΛI .
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The MGM Equivalence in R-Mod

Theorem 2.4 (D. Ssevviiri, 2023)

Let I be any ideal of a ring R,

1 For any M ∈ (R-Mod)I -red,

ΓI (M) ∈ (R-Mod)I -com ∩ (R-Mod)I -cor =: E.

2 For any M ∈ (R-Mod)I -cor,

ΛI (M) ∈ (R-Mod)I -tor ∩ (R-Mod)I -red =: D.

3 The functor ΓI : (R-Mod)I -red → (R-Mod)I -cor restricted to D is an

equivalence between D and E with quasi-inverse ΛI .

4 The equivalence is actually an equality.
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Computation of natural transformations

Since ΓI is representable on the subcategory of I -reduced R-modules, we

can invoke the Yoneda Lemma to compute natural transformations

between ΓI and other functors. For instance, we have

Proposition 2.3

For any ideal I of a ring R, and functors

ΓI : (R-Mod)I -red → (R-Mod)I -cor and I ⊗− : (R-Mod)I -red → Set,

we have

Nat(ΓI (−), ΓI (−)) ∼= R/I and Nat (ΓI (−), I ⊗−) ∼= 0.
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C. Radicals and torsion theory

The objective of this section

We give the necessary and sufficient conditions in terms of I -reduced and

I -coreduced R-modules for the functor HomR(R/I ,−) on the abelian full

subcategory of the category of R-modules to be a radical. These

conditions further provide a setting for the generalisation of Jans’

correspondence, and lead to a new radical class of rings.

Definition of a (pre)radical

A functor γ : R-Mod→ R-Mod which associates to every R-module M, a

submodule γ(M) of M is a:

(i) preradical if for every R-homomorphism f : M → N,

f (γ(M)) ⊆ γ(N);

(ii) radical if it is a preradical and for all M ∈ R-Mod, γ(M/γ(M)) = 0.
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Examples of radicals

1 For any R-module M, the intersection of all maximal submodules of

M is radical called the Jacobson radical of M.

2 Let I be an ideal of R. The functor δI : R-Mod→ R-Mod which

associates to every R-module M, a submodule IM, is a radical.

3 For any finitely generated ideal I of a ring R, the I -torsion functor ΓI

is a left exact idempotent radical on R-Mod.

4 Let S be a multiplicatively closed subset of an integral domain R, the

submodule

t(M) := {m ∈ M : sm = 0 for some s ∈ S}

of M, defines a left exact idempotent radical of R-Mod.

5 For any R-module M, the Bass torsion B(M) := Ker(M → M∗∗),

where M∗ := HomR(M,R), is a radical.
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Properties of the functor HomR(R/I ,−)

Proposition 3.1

For any ideal I of a ring R, the functor HomR(R/I ,−) on the category

R-Mod is a preradical.

Lemma 3.1

Let I be an ideal of a ring R. If the functor ΓI is a radical, then it is the

smallest radical containing the preradical HomR(R/I ,−).
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Proposition 3.2

For any ideal I of a ring R, let AI and BI be abelian full subcategories of

R-Mod.

1 The functor HomR(R/I ,−) on AI is a radical if and only if AI

consists of I -reduced R-modules.

2 The radical δI which associates to every R-module M in BI , an
R-submodule δI (M) := IM is idempotent if and only if BI consists of
I -coreduced R-modules.
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Torsion theory

A torsion theory τ for an abelian category C is a pair (T ,F) of classes of
objects of C such that

1 Hom(T ,F ) = 0 for all T ∈ T , F ∈ F ;
2 if Hom(A,F ) = 0 for all F ∈ F , then A ∈ T ;
3 if Hom(T ,B) = 0 for all T ∈ T , then B ∈ F .

T is called the torsion class of τ

F is called the torsionfree class of τ

A class H of an abelian category C is a torsion-torsionfree class (TTF

class) if it is both a torsion class and a torsionfree class.

A torsion class is hereditary if it is closed under taking submodules.
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Jans’ Correspondence

Theorem 3.1 (Jans, 1965)

There is a one-to-one correspondence between an idempotent ideal I of R

and the TTF class {M ∈ R-Mod : IM = 0}.
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The Generalised Jans’ Correspondence

Theorem 3.2 (D. Ssevviiri, 2025)

For any ideal I of a ring R and an abelian full subcategory AI (resp. BI )
of R-Mod consisting of I -reduced (resp. I -coreduced) R-modules such that

ΓI : AI → BI and ΛI : BI → AI form an adjoint pair, the following hold.

1 The torsion theory associated to the radical ΓI is given by

TI := {M ∈ AI : ΓI (M) = M} and FI := {M ∈ AI : ΓI (M) = 0}.
2 TI is a TTF class.

3 TI for which (TI ,TI ) is a torsion theory is given by

TI := {M ∈ BI : IM = M} with the associated idempotent radical

δI on BI given by δI (M) := IM.

4 There is a one-to-one correspondence between the abelian full

subcategory AI and the TTF class TI .
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Necessary and sufficient conditions for radicality

Theorem 3.3 (D. Ssevviiri, 2025)

Let I be an ideal of a ring R and let AI and BI be abelian full

subcategories of R-Mod such that the functors ΓI : AI → BI and
ΛI : BI → AI form an adjoint pair. The following statements are

equivalent:

1 the functor HomR(R/I ,−) : AI → BI is a radical;

2 AI consists of I -reduced R-modules;

3 TI := {M ∈ AI : IM = 0} is a TTF;

4 BI consists of I -coreduced R-modules;

5 the radical δI which associates to every R-module M in BI , an
R-submodule δI (M) := IM is idempotent.
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Corollary 3.1

Let I be an ideal of a ring R. The following statements are equivalent:

1 The functor HomR(R/I ,−) is a radical on the category R-Mod.

2 Every R-module is I -reduced.

3 I is an idempotent ideal.

4 TI := {M ∈ R -Mod : IM = 0} is a TTF.

5 The functor δI (M) := IM is an idempotent radical on the category

R-Mod.

6 Every R-module is I -coreduced.
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Examples

If I is an idempotent ideal of R, then AI = BI = R-Mod and

Theorem 3.2 retrieves Jans’ correspondence.

If R is a Noetherian ring and R-mod is the full subcategory of R-Mod

consisting of all finitely generated R-modules, then every module

M ∈ R-mod is I k -reduced for some positive integer k. If

t = Maximum
M∈R-Mod

{k(M)} exists, then CI t = R-mod.

If I is any ideal of R, then the collection of all semisimple R-modules

forms an abelian category whose modules are both I -reduced and

I -coreduced.
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The radical class of rings induced

S is a ring which is not necessarily commutative or unital.

A class of rings Ψ is called a radical class if

1 Ψ is homomorphically closed, i.e., if S ∈ Ψ and f : S → T is a ring

homomorphism, then f (S) ∈ Ψ;

2 for every ring S ∈ Ψ, the sum Ψ(S) :=
∑
{J ◁ S : J ∈ Ψ} is in Ψ;

3 Ψ(S/Ψ(S)) = 0 for all rings S ∈ Ψ.
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Theorem 3.4 (D. Ssevviiri, 2025)

Let I be an idempotent ideal of a ring R. The class of rings

ΨI := {S : S is a ring and an R-module such that IS = 0}

is a radical class.
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D. Relationship with local cohomology

In this section, all rings will be Noetherian. For any R-module M and an

ideal I of R,

the ith local cohomology module with respect to I is the module

H i
I (M) := H i (ΓI (E

∗
M)),

where E ∗
M is the injective resolution of M.

H i
I (M) ∼= lim−→

k

ExtiR(R/I
k ,M).

The computation can also be via the C̆ech complex or the Koszul

complex.

Local cohomology has several applications in both commutative

algebra and algebraic geometry.
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Local cohomology continued

Local cohomology is used to characterise several notions, among them are:

depth of a module,

dimension of a module,

Cohen-Macaulay modules,

Gorenstein rings.
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Depth and dimension

The depth of I on M, denoted depthR(I ,M), is the maximal length of

an M-regular sequence in I .

When (R,m, k) is a local ring, we simply write depthRM for

depthR(m,M).

The dimension of a finitely generated R-module M, denoted by

dimR(M), is the Krull dimension of the ring R/(0 :R M), where

(0 :R M) is the annihilator of the R-module M.
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Characterisation of depth and dimension

Theorem 4.1

Let I ⊆ R be an ideal and M a finitely generated R-module such that

IM ̸= M, then

depthR(I ,M) = inf {n ∈ N | Hn
I (M) ̸= 0} .

Theorem 4.2

Let (R,m, k) be a local ring and M be a finitely generated R-module.

dimR(M) = sup {n ∈ N | Hn
m(M) ̸= 0} .
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Characterisation of CM modules

Definition 4.1

Let (R,m, k) be a local ring. A finitely generated R-module M is

Cohen-Macaulay if depthR(M) = dimR(M). The ring R is

Cohen-Macaulay if it is Cohen-Macaulay as an R-module.

Theorem 4.3

Let (R,m, k) be a local ring. A finitely generated R-module M is

Cohen-Macaulay if and only if for all i ̸= dimR(M),

H i
m(M) = 0.
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Characterisation of Gorenstein rings

Definition 4.2

A Gorenstein local ring is a commutative Noetherian local ring R with

finite injective dimension as an R-module.

Theorem 4.4

Let (R,m, k) be a local ring of dimension d. A ring R is Gorenstein if and

only if

H i
m(R) =

0 for i ̸= d

ER(k) for i = d .
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Local Duality

Theorem 4.5 (Local Duality 1)

Let (R,m, k) be a Gorenstein local ring of

dimension d and M be a finitely generated R-module. For 0 ≤ i ≤ d,

H i
m(M) ∼= Extd−i

R (M,R)v , where (−)v = HomR(−,ER(k)).

Theorem 4.6 (Local Duality 2)

Let (R,m, k) be a d-dimensional Cohen-Macaulay local ring with a

canonical module ω. If M is a finitely generated R-module, then for

0 ≤ i ≤ d, H i
m(M) ∼= Extd−i

R (M, ω)v , where (−)v = HomR(−,ER(k)).
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Some notes about local duality

Local duality

is the local avatar of Serre duality;

allows for transfer of questions on local cohomology to questions

about Ext modules.
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E. Research questions

If I is an idempotent ideal of R, then every R-module is I -reduced and

H i
I (M) ∼= ExtiR(R/I ,M).

This simplifies the computation of local cohomology.
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The first question - Commutative Algebra

Question 5.1

Does there exist a “nice” abelian subcategory AI of R-Mod which has

enough injectives and consists of I -reduced R-modules?
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Importance of the first question

An affirmative answer is important because

1 It would follow that for all M ∈ AI , H
i
I (M) ∼= ExtiR(R/I ,M)

simplifying the computation of local cohomology in this setting.

2 Just like local duality, it would allow transfer of questions from the

local cohomology module to just the Ext module.

3 The isomorphism H i
I (M) ∼= ExtiR(R/I ,M) would lead to an

affirmative answer to the 6 finiteness questions about local

cohomology modules posed by Huneke in [3].

4 It would also answer some open questions posed by D. Eisenbud, M.

Mustata and M. Stillman in [2]. See Questions 6.1 and 6.2 in [2].
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Questions posed by Huneke

Let M be a finitely generated R-module.

1 When are the R-modules H i
I (M)

(i) Artinian?

(ii) finitely generated?

(iii) I -cofinite?

2 When are the R-modules Soc(H i
I (M)) finitely generated?

3 Is the set AssR(H
i
I (M)) finite?

4 When are the Bass numbers of H i
I (M) finite?
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The second question - Algebraic Geometry

The functor ΓI first appeared in algebraic geometry in the setting of

sheaves where it is called the section functor.

Indeed, there is a version of GM Duality and MGM Equivalence for

schemes, see [1].

Question 5.2

Can we get a geometric interpretation (and geometric applications) of the

notion of locally reduced modules?
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The third question- Noncommutative Algebra

Let R be a noncommutative ring. If I is a right ideal of R, then

IΓI (R) is a nil right ideal of R.

This is a gadget which associates to every right ideal of R, a nil right

ideal.

Köthe conjecture states that the sum of two nil right ideals of R is nil.

Question 5.3

Can the aforementioned gadget be utilised to construct counter examples

to the Köthe conjecture?
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The End

Thank you!
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