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Starting question

Question (1969 Putnam Competition, B2)

G is a finite group with identity 1. Show that we cannot find two proper
subgroups A and B (̸= {1} or G) such that A ∪ B = G. Can we find three
proper subgroups A,B,C such that A ∪ B ∪ C = G?
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Early history: groups

Definition
• A cover of a group G is a collection of proper subgroups of G whose
set theoretic union is all of G .

• Assuming a cover exists for G , the covering number σ(G ) of G is the
size of a minimum cover.

Theorem (Scorza [Sco26])

A group G has σ(G ) = 3 if and only if there is a surjective homomorphism
from G onto the Klein 4-group, C2 × C2.

This result was “rediscovered” many times in subsequent years!

For a nice proof of Scorza’s result, see Bhargava [Bha09].
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Motivating question: What about other integers???

Given an integer n, is there a group G with σ(G ) = n?

Known Results

• Cohn [Coh94]: pd + 1 is a covering number for p prime

• Tomkinson [Tom97]: there is no group G such that σ(G ) = 7

• Detomi, Lucchini [DL08]: there is no group G such that σ(G ) = 11

• Garonzi [Gar13]: classified integers ⩽ 25 that are covering numbers

• Garonzi, Kappe, S. [GKS22]: classified integers ⩽ 129 that are
covering numbers

Not covering numbers: 2, 7, 11, 19, 22, 25, 27, 34, 35, 37, 39, 41, 43, 45,
47, 49, 51, 52, 53, 55, 56, 58, 59, 61, 66, 69, 70, 75, 76, 77, 78, 79, 81,
83, 87, 88, 89, 91, 93, 94, 95, 96, 97, 99, 100, 101, 103, 105, 106, 107,
109, 111, 112, 113, 115, 116, 117, 118, 119, 120, 123, 124, 125
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A conjecture for groups. . .

Conjecture (Garonzi, Kappe, S. [GKS22])

There are infinitely many integers that are not covering numbers of
groups. Moreover,

lim
N→∞

# of integers ⩽ N that are covering numbers

N
= 0
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. . . and some results for other structures

• cover of an algebraic structure A: proper algebraic substructures
whose set theoretic union is A

• covering number: size of a minimum cover

Theorem (Gagola III, Kappe [GK16])

Every integer n > 2 is a covering number of a loop.

Theorem (Donoven, Kappe [DK23])

• The covering number of a finite semigroup that is not a group and
not generated by a single element is always two.

• For each n ⩾ 2, there exists an inverse semigroup whose covering
number (by inverse subsemigroups) is exactly n.
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What about rings???

Definition

A ring is a set R equipped with binary operations + and · satisfying:
• (R,+) is an abelian group,

• multiplication is associative,

• distributive laws hold.

Definition

A ring with unity is a ring that also has a unity (multiplicative identity).

NOTE: some authors refer to these as “rngs” and “rings,” respectively
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The covering number of a ring

Definition

For us, a subring S ⊆ R is a group under addition and closed under
multiplication; that is, a subring need not contain a multiplicative
identity.

Definition
• A cover of a ring R is a collection of proper subrings of R whose set

theoretic union is all of R.

• Assuming a cover exists for R, the covering number σ(R) of R is the
size of a minimum cover.
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Which integers are covering numbers of rings?

How does one even begin to answer this question???

Lemma

If I is an ideal of a ring R and R/I admits a finite cover, then
σ(R) ⩽ σ(R/I ).

IDEA: Take the inverse image under the natural projection of a cover of
R/I !
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σ-elementary rings

Definition

A ring R is σ-elementary if σ(R) < σ(R/I ) for every nonzero two-sided
ideal I of R.

Theorem (B. H. Neumann [Neu54], Lewin [Lew67])

If ring R has finite covering number, then there exists a finite
homomorphic image of R with the same covering number.

In other words: to determine which integers are covering numbers of
rings, it suffices to consider finite (σ-elementary) rings.

IDEA: Classify all σ-elementary rings!
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Reductions

Lemma (S., Werner [SW21])

Let R be a ring with unity such that σ(R) is finite. Then, there exists a
two-sided ideal I of R such that:

• R/I is finite;

• R/I has characteristic p;

• J (R/I )2 = {0};
• and σ(R/I ) = σ(R).
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The Wedderburn-Malcev Theorem

Theorem (Wedderburn-Malcev Theorem)

R: finite ring with unity of characteristic p
Then, there exists an Fp-subalgebra S of R such that:

• R = S ⊕ J (R),

• S ∼= R/J (R) as Fp-algebras,

• S: unique up to conjugation by elements of 1 + J (R).

• J (R): Jacobson radical

• S : semisimple

• S ∼= S1 ⊕ · · · ⊕ St , each Si simple

• So, each Si ∼=

{
finite field Fpdi

full matrix ring Mni (p
di )
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Example: R semisimple, R/J commutative (Products of
fields)

R Coverable? σ(R)?

F2

Not coverable!
F2 ⊕ F2 σ(R) = 3
F3 ⊕ F3 Not coverable! R = ⟨(1,−1)⟩

F3 ⊕ F3 ⊕ F3 σ(R) = 6
F4 ⊕ F4 ⊕ F4 ⊕ F4 σ(R) = 4

F4 ⊕ F4 σ(R) = 4

What’s going on???
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Example: R semisimple, R/J commutative, cont.

(Werner [Wer15])

• q = pd , a prime power

• τ(q) :=

{
p, if d = 1,

|{f ∈ Fp[x ] : deg(f ) = d , f monic, irred.}|+ 1, if d > 1

• ν(q) :=

{
1, if d = 1,

# distinct prime factors of d, if d > 1

• R =
⊕t

i=1 Fq is coverable iff t ⩾ τ(q)

When R is coverable,

σ(R) = τ(q)ν(q) + d

(
τ(q)

2

)
.
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Example: R semisimple, R/J noncommutative (Full matrix
rings)

(Lucchini, Maróti [LM10], Crestani [Cre12])

• R = Mn(q), n ⩾ 2 (all n × n matrices with entries in Fq)

• a: smallest prime divisor of n

•
(n
k

)
q
:= (qn−1)(qn−1−1)···(qn−(k−1)−1

(qk−1)(qk−1−1)···(q−1)

σ(R) =
1

a

n−1∏
k=1;a∤k

(qn − qk) +

⌊n/2⌋∑
k=1;a∤k

(
n

k

)
q

• Peruginelli, Werner [PW18]: the only noncommutative semisimple
σ-elementary rings are Mn(q)
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Example: R not semisimple, R/J commutative

(S., Werner [SW21])

• q = pd

• R = Fq(+)F2
q, idealization of Fq with 2-dimensional vector space F2

q

• R :=


a b c
0 a 0
0 0 a

 : a, b, c ∈ Fq


• Here: S , J

σ(R) = q + 1
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R not semisimple, R/J noncommutative???

• R :=

(
M4(2) M4×1(2)

0 F2

)

• S , J

• There are |J| = 24 = 16 complements to J in R

• For each 1-dimensional subspace U of F4
2, let TU ⊆ M4(2) be the set

of all elements stabilizing U.

• There are
(4
1

)
2
= 24−1

2−1 = 15 maximal subrings of the form(
TU M4×1(2)

0 F2

)

• Collectively, these rings form a (minimal) cover of size 31.

• σ(M4(2)) = 71, so R is σ-elementary!
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Rings of AGL-type

Definition (AGL-type ring)

• q1 = pd1 , q2 = pd2

• q = q1 ⊗ q2 := pLCM(d1,d2) = qd1
•

A(n, q1, q2) :=

(
Mn(q1) Mn×1(q)

0 Fq2

)

Why “AGL-type?” Inspired by representations of the affine general linear
group AGL(n, q), where

AGL(n, q) ∼=
(

GL(n, q) Mn×1(q)

0 1

)
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How do we cover A(n, q1, q2)?

As it turns out, in general a minimal cover of R = A(n, q1, q2) consists of:

• All qn complements to J in R.

• All
(n
d

)
q1

maximal subrings of the form(
TU Mn×1(q)

0 Fq2

)
,

where U is a d-dimensional subspace of of Fn
q1 and TU is the set of all

elements of Mn(q1) stabilizing U.

• All ω(d) maximal subrings of the form(
Mn(q1) Mn×1(q)

0 Fr

)
,

where Fr is a maximal subfield of Fq2 containing Fq1 ∩ Fq2 , where

ω(d) = # distinct prime divisors of d
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The covering number of A(n, q1, q2)

Theorem (S., Werner [SW24])

R ∼= A(n, q1, q2), where n ⩾ 1, and let

• q := q1 ⊗ q2 = qd1 ,

• a be the smallest prime divisor of n (if n ⩾ 2).

Then, R is σ-elementary if and only if one of the following holds:

1 n = 1 and (q1, q2) ̸= (2, 2) or (4, 4). In this case, σ(R) = q + 1.

2 n ⩾ 3, d < n − (n/a), and (n, q1) ̸= (3, 2). In this case,

σ(R) = qn +

(
n

d

)
q1

+ ω(d).
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Thank you!
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