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Commutative Dedekind Domains

A commutative domain D is a Dedekind domain if it is
hereditary:

every ideal I ◁ D is projective

Properties
• noetherian
• every nonzero ideal I ◁ D is invertible

Dual basis lemma: I∗I = EndD(I)

Examples
• every PID
• rings of algebraic integers OK of a number field K
• coordinate rings k [C] of non-singular affine algebraic

curves C over an a.c. field k
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Ideal Factorization Theory

Theorem
Any nonzero ideal I ◁ D factors as

I = Pn1
1 · · ·Pnk

k

for some maximal ideals Pi ◁ D in a unique way.

We can state this using divisors:

∂ : ideals in D −→
⊕

M simple
Z≥0 · M = Div(D)

I 7→
∑

i

ni · D/Pi

The map ∂ is a monoid isomorphism!
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We can state this using divisors:

∂ : ideals in D −→
⊕

M simple
Z≥0 · M = Div(D)

I 7→
∑

i

ni · D/Pi =
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HNP Rings

A ring R is an HNP ring if it is:
hereditary, noetherian, prime

Examples
Hereditary Z-orders in a CSA over Q:

HZ

Theorem (Rump-Yang 2016, 2025)
There is a binary operation ◦ on Div(R) such that

∂ : two-sided ideals in R −→ (Div(R), ◦)

is a monoid embedding.
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One-Sided Ideal Theory

We shouldn’t just multiply RI and RJ !

In the tensor product IR ⊗ RJ the middle ring must match.

Category of one-sided ideals:

S R
SIR ∂ S R T

Div(S) Div(R)

Div(S)

Theorem (Smertnig-V. 2025)
There is at most one operation ◦ that makes ∂ a functor
such that D ◦ − D : Div(R) → Div(S) is additive.

For ideals I and J , we have: ∂I J = ∂I + I ⊗ ∂J .
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