On the Ideal Theory of HNP Rings

Daniel Vitas

University of Ljubljana, Slovenia

July 14, 2025

Daniel Vitas On the Ideal Theory of HNP Rings

A commutative domain *D* is a *Dedekind domain* if it is **hereditary**:

every ideal $I \lhd D$ is projective

A commutative domain *D* is a *Dedekind domain* if it is **hereditary**:

every ideal $I \lhd D$ is projective

Properties • noetherian

A commutative domain *D* is a *Dedekind domain* if it is **hereditary**:

every ideal $I \lhd D$ is projective

Properties

- noetherian
- every nonzero ideal *I* <> *D* is invertible

A commutative domain *D* is a *Dedekind domain* if it is **hereditary**:

every ideal $I \lhd D$ is projective

Properties

- noetherian
- every nonzero ideal *I* <> *D* is invertible

Dual basis lemma: $I^*I = \operatorname{End}_D(I)$

A commutative domain *D* is a *Dedekind domain* if it is **hereditary**:

every ideal $I \lhd D$ is projective

Properties noetherian every nonzero ideal *I* < *D* is invertible

Dual basis lemma: $I^*I = \operatorname{End}_D(I)$

Examples

every PID

A commutative domain *D* is a *Dedekind domain* if it is **hereditary**:

every ideal $I \lhd D$ is projective

Properties noetherian every nonzero ideal *I* < *D* is invertible

Dual basis lemma: $I^*I = \operatorname{End}_D(I)$

Examples

- every PID
- rings of algebraic integers \mathcal{O}_K of a number field K

A commutative domain *D* is a *Dedekind domain* if it is **hereditary**:

every ideal $I \lhd D$ is projective

Properties

- noetherian
- every nonzero ideal *I* <> *D* is invertible

Dual basis lemma: $I^*I = \operatorname{End}_D(I)$

Examples

- every PID
- rings of algebraic integers \mathcal{O}_K of a number field K
- coordinate rings *k*[*C*] of non-singular affine algebraic curves *C* over an a.c. field *k*

Ideal Factorization Theory

Theorem

Any nonzero ideal $I \lhd D$ factors as

$$I=P_1^{n_1}\cdots P_k^{n_k}$$

for some maximal ideals $P_i \triangleleft D$ in a unique way.

Ideal Factorization Theory

Theorem

Any nonzero ideal $I \lhd D$ factors as

$$I=P_1^{n_1}\cdots P_k^{n_k}$$

for some maximal ideals $P_i \triangleleft D$ in a unique way.

We can state this using *divisors*:

$$\partial$$
: ideals in $D \longrightarrow \bigoplus_{M \text{ simple}} \mathbb{Z}_{\geq 0} \cdot M = \text{Div}(D)$
 $I \mapsto \sum_{i} n_{i} \cdot D/P_{i}$

Theorem

Any nonzero ideal $I \lhd D$ factors as

$$I=P_1^{n_1}\cdots P_k^{n_k}$$

for some maximal ideals $P_i \triangleleft D$ in a unique way.

We can state this using *divisors*:

$$\partial$$
: ideals in $D \longrightarrow \bigoplus_{M \text{ simple}} \mathbb{Z}_{\geq 0} \cdot M = \text{Div}(D)$
 $I \mapsto \sum_{i} n_{i} \cdot D/P_{i}$

The map ∂ is a monoid isomorphism!

Theorem

Any nonzero ideal $I \lhd D$ factors as

$$I=P_1^{n_1}\cdots P_k^{n_k}$$

for some maximal ideals $P_i \triangleleft D$ in a unique way.

We can state this using *divisors*:

$$\partial$$
: ideals in $D \longrightarrow \bigoplus_{M \text{ simple}} \mathbb{Z}_{\geq 0} \cdot M = \text{Div}(D)$
 $I \mapsto \sum_{i} n_{i} \cdot D/P_{i} = \frac{\text{J.-H. decomp.}}{\text{of } D/I}$

The map ∂ is a monoid isomorphism!

Examples

Hereditary \mathbb{Z} -orders in a CSA over \mathbb{Q} :

Examples Hereditary \mathbb{Z} -orders in a CSA over \mathbb{Q} : $\mathbb{H}_{\mathbb{Z}}$

Examples

Hereditary \mathbb{Z} -orders in a CSA over \mathbb{Q} : $\mathbb{H}_{\mathbb{Z}} \subseteq \mathbb{H}_{\mathbb{Z}} + \frac{1}{2}(1 + i + j + k)\mathbb{Z}$

HNP Rings

A ring *R* is an *HNP ring* if it is: **hereditary**, **noetherian**, **prime**

Examples

Hereditary \mathbb{Z} -orders in a CSA over \mathbb{Q} :

$$\mathbb{H}_{\mathbb{Z}} \subseteq \mathbb{H}_{\mathbb{Z}} + \frac{1}{2}(1+i+j+k)\mathbb{Z}$$

 $M_2(\mathbb{Z})$

HNP Rings

A ring *R* is an *HNP ring* if it is: **hereditary**, **noetherian**, **prime**

Examples

Hereditary \mathbb{Z} -orders in a CSA over \mathbb{Q} : $\mathbb{H}_{\mathbb{Z}} \subseteq \mathbb{H}_{\mathbb{Z}} + \frac{1}{2}(1 + i + j + k)\mathbb{Z}$ $\begin{bmatrix} \mathbb{Z} & p\mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{bmatrix} \subseteq M_2(\mathbb{Z})$

HNP Rings

A ring *R* is an *HNP ring* if it is: hereditary, noetherian, prime

Examples

Hereditary \mathbb{Z} -orders in a CSA over \mathbb{Q} : $\mathbb{H}_{\mathbb{Z}} \subseteq \mathbb{H}_{\mathbb{Z}} + \frac{1}{2}(1 + i + j + k)\mathbb{Z}$ $\begin{bmatrix} \mathbb{Z} & p\mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{bmatrix} \subseteq M_{2}(\mathbb{Z})$

Theorem (Rump-Yang 2016, 2025)

There is a binary operation \circ on Div(R) such that

 ∂ : two-sided ideals in $R \longrightarrow (Div(R), \circ)$

is a monoid embedding.

We shouldn't just multiply $_{R}I$ and $_{R}J$!

We shouldn't just multiply $_{R}I$ and $_{R}J$!

In the tensor product $I_R \otimes_R J$ the middle ring must match.

We shouldn't just multiply $_RI$ and $_RJ$!

In the tensor product $I_R \otimes_R J$ the middle ring must match.

We shouldn't just multiply $_RI$ and $_RJ$!

In the tensor product $I_R \otimes_R J$ the middle ring must match.

$$S \xleftarrow{S^{I_R}} R \xleftarrow{RJ_T} T$$

We shouldn't just multiply $_{R}I$ and $_{R}J$!

In the tensor product $I_R \otimes_R J$ the middle ring must match.

We shouldn't just multiply $_{R}I$ and $_{R}J$!

In the tensor product $I_R \otimes_R J$ the middle ring must match.

We shouldn't just multiply $_{R}I$ and $_{R}J$!

In the tensor product $I_R \otimes_R J$ the middle ring must match.

We shouldn't just multiply $_{R}I$ and $_{R}J$!

In the tensor product $I_R \otimes_B J$ the middle ring must match.

Category of one-sided ideals:

Theorem (Smertnig-V. 2025)

There is at most **one** operation \circ that makes ∂ a functor such that $D \circ _ - D$: $Div(R) \rightarrow Div(S)$ is additive.

We shouldn't just multiply $_{R}I$ and $_{R}J$!

In the tensor product $I_R \otimes_B J$ the middle ring must match.

Category of one-sided ideals:

Theorem (Smertnig-V. 2025)

There is at most **one** operation \circ that makes ∂ a functor such that $D \circ _ - D$: $Div(R) \rightarrow Div(S)$ is additive.

For ideals *I* and *J*, we have: $\partial I J = \partial I + I \otimes \partial J$.

- L. S. Levy and J. C. Robson, *Hereditary Noetherian prime rings and idealizers* No. **174**, Amer. Math. Soc. 2011
- W. Rump, The Role of Divisors in Noncommutative Ideal Theory, In Conference on Rings and Factorizations, Springer (2025) pp. 391–416.
- W. Rump and Y. Yang, *Hereditary arithmetics*, Journal of Algebra No. **468** (2016) pp. 214–252.