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Rings, Subrings, and Covers

For this talk:
A ring R is an associative ring with unity.
A subring S of R need not have a multiplicative identity.
Subring = group under +, closed under mult.

Let R be a ring.
A cover of R is a collection C of proper subrings of R whose union is all of R:

R =
⋃
S∈C

S

R is coverable if and only if a cover exists.

The covering number of R is the minimum number of subrings necessary to
cover R.

σ(R) = covering number of R. If R is not coverable, then we set σ(R) = ∞
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σ-elementary Rings

Recall: σ(R) ⩽ σ(R/I) for any two-sided ideal I

Definition
R is σ-elementary if σ(R) < σ(R/I) for every non-zero two-sided ideal of R.

A σ-elementary ring must be coverable, since σ(R) < σ({0}) = ∞.

If R is coverable but not σ-elementary, then σ(R) = σ(R/I) for some I.

If R admits a finite cover, then σ(R) = σ(R ′) for some σ-elementary ring R ′

that is a residue ring of R.

If n ∈ N occurs as a covering number of a ring, then n is the covering
number of some σ-elementary ring.

Goal: classify all σ-elementary rings
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The Big Theorem: Four Families of σ-elementary Rings

Theorem (Swartz, W. (2024))
Let R be a σ-elementary ring.
Then, R is a finite ring of characteristic p, and one of the following holds.

1. If R is commutative and semisimple, then R is a direct sum of copies of Fq.
For some prime power q, R ∼=

⊕τ(q)
i=1 Fq

2. If R is commutative but not semisimple, then R is an idealization.
For some prime power q, R ∼= Fq(+)F2

q

3. If R is noncommutative and semisimple, then R is a matrix ring.
For some prime power q and integer n ⩾ 2, R ∼= Mn(q)

4. If R is noncommutative and not semisimple, then R is a ring of AGL-type.
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Summary of Formulas
Let R be a σ-elementary ring.

1. If R is commutative and semisimple, then R ∼=
⊕τ(q)

i=1 Fq, q = pd , and

σ(R) = τ(q)ν(q) + d
(

τ(q)
2

)

Bounds: q2

d2 ⩽ σ(R) ⩽ q2

2d

2. If R is commutative but not semisimple, then R ∼= Fq(+)F2
q, and σ(R) = q + 1

3. If R is noncommutative and semisimple, then R ∼= Mn(q), a is the smallest prime
divisor of n, and

σ(R) = 1
a

∏n−1
k=1,a∤k(qn − qk) +

∑⌊n/2⌋
k=1,a∤k

(n
k

)
q

Bounds: qn(n−(n/a)−1) ⩽ σ(R) ⩽ qn(n−(n/a))

4. If R is noncommutative and not semisimple, then (barring small exceptions),
R ∼= A(n, q1, q2), n ⩾ 3, q = qd

1 , d < n, and

σ(R) = qn +
(n

d

)
q1

+ ω(d)

Bounds: qn ⩽ σ(R) ⩽ qn + qn−d+1 + d

All possible covering numbers of rings come from these formulas!!
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Reductions 1 and 2: Finite Rings of Order pn

Theorem (B. H. Neumann, J. Lewin)
Let R be a coverable ring such that σ(R) is finite. Then, there exists a two-sided
ideal I of R such that R/I is finite and σ(R) = σ(R/I).

Chinese Remainder Theorem
Let R be a finite ring. Then, R is isomorphic to a direct product of rings of prime
power order:

R ∼= R1 × R2 × · · · × Rm, where |Ri | = pdi
i for distinct primes p1, . . . , pm.

Also, if S is a subring of R, then S ∼= S1 × S2 × · · · × Sm, where each Si is a
subring of Ri .

Corollary
Let R be as above. If R is coverable, then σ(R) = min

1⩽i⩽m
σ(Ri).
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Reduction 3: Rings of Characteristic p

Proposition (Swartz, W. (2021))
Let R be a finite coverable ring of order pn.

Then σ(R) = σ(R/pR).

Proof sketch:

Show that pR ⊆ M for every maximal subring M of R.

Since pR is contained in every maximal subring, any minimal cover of R can
be pushed forward onto R/pR.
So, σ(R/pR) ⩽ σ(R).

But, σ(R) ⩽ σ(R/pR). Thus, σ(R/pR) = σ(R).
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Reduction 4: Rings with JRad(R)2 = 0

Wedderburn-Malcev Theorem
Let R be a finite ring characteristic p.
Let J be the Jacobson radical of R (J = intersection of max. ideals).
There exists a semisimple (direct sum of mat. rings) Fp-subalgebra S of R such that:

R = S ⊕ J
S ∼= R/J

S is unique up to conjugation by elements of 1 + J

Theorem (Swartz, W. (2021))
Let R be a finite coverable ring of characteristic p.
Then, J2 is contained in every maximal subring of R.
Thus, σ(R) = σ(R/J2).

Corollary
If σ(R) is finite, then to find σ(R) it suffices to consider residue rings of R that
are finite; have characteristic p; and have J2 = 0.
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The “Too Many Conjugates” Principle

Proposition (Swartz, W. (2021))
Let R be a σ-elementary ring, and let C be a minimal cover of R.
Let T be a maximal subring of R that has an ideal complement in R.
That is R = T ⊕ I for some two-sided ideal I of R.
Then

# conjugates of T in R ⩽ σ(R) < σ(T )

Proof sketch:

Certainly, σ(R) ⩽ σ(R/I) = σ(T ).
But, R is σ-elementary, so σ(R) < σ(T ).
If T /∈ C, then contract each subring in C to T to get a cover of T . So,

σ(T ) ⩽ |C| = σ(R).

Contradiction!
Conclusion: T , and every conjugate of T , must be in C.

How to use this: If T has “too many” conjugates, then R is not σ-elementary!
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Peirce Decomposition
Assumptions so far:

R: finite, characteristic p
J : Jacobson radical of R, J2 = 0
R = S ⊕ J , where S ∼= R/J is semisimple
S is unique up to conjugation by elements of 1 + J

Fix a choice for S
Then, for some N ⩾ 1,

S =
⊕N

i=1 Si , where each Si is a simple ring: Si ∼= Mni (qi) (ni ⩾ 1, qi = pdi )
Let ei = 1Si . Then, e1, . . . , eN are orthogonal idempotents and

∑
i ei = 1R

Perform a Peirce decomposition of J :

J =
⊕

1⩽i,j⩽n
eiJej

Each eiJej is an (Si , Sj)-bimodule.
Because J2 = 0, each eiJej is a two-sided ideal of R!!
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Restrictions on σ-elementary Rings
Assumptions:

R: finite, characteristic p, R = S ⊕ J
J : Jacobson radical of R, J2 = 0
S =

⊕N
i=1 Si , ei = 1Si

Consequences of Peirce Decomposition of J :
For all 1 ⩽ i , j ⩽ N, eiJej is a two-sided ideal of R.

Any two-sided ideal I ⊆ J has an ideal complement Î in J : J = I ⊕ Î

Assume I is a maximal subideal of J . Let T = S ⊕ I.
Then, T is a maximal subring of R, and R = T ⊕ Î, and T ∼= R/Î.
By the “Too Many Conjugates” Principle, if R is σ-elementary, then

# conjugates of T in R ⩽ σ(R) < σ(T )

Roughly speaking, we end up with lots of conjugates whenever:
▶ Si is noncommutative and eiJei ̸= 0; or
▶ Both Si and Sj are noncommutative and eiJej ̸= 0; or
▶ Si is noncommutative, Sj is a field, eiJej is not a simple (Si , Sj)-bimodule

R cannot be σ-elementary in these cases
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By the “Too Many Conjugates” Principle, if R is σ-elementary, then

# conjugates of T in R ⩽ σ(R) < σ(T )

Roughly speaking, we end up with lots of conjugates whenever:
▶ Si is noncommutative and eiJei ̸= 0; or
▶ Both Si and Sj are noncommutative and eiJej ̸= 0; or
▶ Si is noncommutative, Sj is a field, eiJej is not a simple (Si , Sj)-bimodule

R cannot be σ-elementary in these cases

Nicholas J. Werner (SUNY at Old Westbury) Covering Numbers of Rings II July 14, 2025 11 / 18



Restrictions on σ-elementary Rings
Assumptions:

R: finite, characteristic p, R = S ⊕ J
J : Jacobson radical of R, J2 = 0
S =

⊕N
i=1 Si , ei = 1Si

Consequences of Peirce Decomposition of J :
For all 1 ⩽ i , j ⩽ N, eiJej is a two-sided ideal of R.
Any two-sided ideal I ⊆ J has an ideal complement Î in J : J = I ⊕ Î
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By the “Too Many Conjugates” Principle, if R is σ-elementary, then

# conjugates of T in R ⩽ σ(R) < σ(T )

Roughly speaking, we end up with lots of conjugates whenever:
▶ Si is noncommutative and eiJei ̸= 0; or
▶ Both Si and Sj are noncommutative and eiJej ̸= 0; or
▶ Si is noncommutative, Sj is a field, eiJej is not a simple (Si , Sj)-bimodule

R cannot be σ-elementary in these cases

Nicholas J. Werner (SUNY at Old Westbury) Covering Numbers of Rings II July 14, 2025 11 / 18



Restrictions on σ-elementary Rings
Assumptions:

R: finite, characteristic p, R = S ⊕ J
J : Jacobson radical of R, J2 = 0
S =

⊕N
i=1 Si , ei = 1Si

Consequences of Peirce Decomposition of J :
For all 1 ⩽ i , j ⩽ N, eiJej is a two-sided ideal of R.
Any two-sided ideal I ⊆ J has an ideal complement Î in J : J = I ⊕ Î
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After the Dust Settles
Assume R is σ-elementary.

There is at most one pair (i , j) with eiJej ̸= 0.

If eiJej = 0 for all 1 ⩽ i , j ⩽ N, then R is semisimple.
▶ Commutative case: R ∼=

⊕τ(q)
k=1 Fq

▶ Noncommutative case: R ∼= Mn(q)

Suppose eiJei ̸= 0.
▶ Commutative case: R ∼= Fq(+)F2

q
▶ Noncommutative case: can’t happen! (too many conjugates)

Suppose eiJej ̸= 0 with i ̸= j .

▶ Commutative case: can’t happen! (for x ∈ ei Jej \ {0}, ei x = x but xei = 0)
▶ Noncommutative case: R is an AGL-type ring.

WLOG, Si = Mn(qi) and Sj = Fqj .
Then, eiJej must be a simple (Si , Sj)-bimodule:

eiJej ∼= Mn×1(q), q = order of compositum of Fqi and Fqj

We get R ∼=
(

Mn(qi) Mn×1(q)
0 Fqj

)
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What about RNGs?
We can relate covers of non-unital rings (rngs) with coverings of unital rings.

Dorroh Extension
Let R be a rng of characteristic n ⩾ 0.

The Dorroh extension or unitization of R is the ring

R1 := Zn × R

with operations

(n1, r1) + (n2, r2) = (n1 + n2, r1 + r2)
(n1, r1)(n2, r2)= (n1n2, n1r2 + n2r1 + r1r2)

Properties:
R1 is a ring with identity element (1, 0)
R embeds into R1 via r 7→ (0, r)
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Unital Covers

Definition
Let R be a ring with unity. Assume R can be covered by proper subrings
containing 1R .

Let σu(R) be the size of a minimal cover of R by proper subrings containing 1R .

We call σu(R) the unital covering number of R.

Theorems (Swartz, W. (2024))
1. Let R be a ring with unity. Assume R can be covered by proper subrings

containing 1R .
Then, σu(R) = σ(R).

2. Let R be a rng that has a finite cover.
Let R1 be the Dorroh extension of R.
Then, σ(R) = σu(R1).
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Summary of Formulas
Let R be a σ-elementary ring with unity.

1. If R is commutative and semisimple, then R ∼=
⊕τ(q)

i=1 Fq, q = pd , and

σ(R) = τ(q)ν(q) + d
(

τ(q)
2

)
Bounds: q2

d2 ⩽ σ(R) ⩽ q2

2d

2. If R is commutative but not semisimple, then R ∼= Fq(+)F2
q, and σ(R) = q + 1

3. If R is noncommutative and semisimple, then R ∼= Mn(q), a is the smallest prime
divisor of n, and

σ(R) = 1
a

∏n−1
k=1,a∤k(qn − qk) +

∑⌊n/2⌋
k=1,a∤k

(n
k

)
q

Bounds: qn(n−(n/a)−1) ⩽ σ(R) ⩽ qn(n−(n/a))

4. If R is noncommutative and not semisimple, then (barring small exceptions),
R ∼= A(n, q1, q2), n ⩾ 3, q = qd

1 , d < n, and

σ(R) = qn +
(n

d

)
q1

+ ω(d)

Bounds: qn ⩽ σ(R) ⩽ qn + qn−d+1 + d

All possible covering numbers of rings come from these formulas!!
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Almost All Positive Integers are Not Covering Numbers
Theorem (Swartz, W. (2024))
Let N ∈ N, N ⩾ 2.

Form Max # integers at most N

τ(q)ν(q) + d
(

τ(q)
2

)

8N/ log2 N

q + 1

8N/ log2 N

1
a

∏n−1
k=1,a∤k(qn − qk) +

∑⌊n/2⌋
k=1,a∤k

(n
k
)

q

56N/ log2 N

qn +
(n

d
)

q1
+ ω(d)

72N/ log2 N

Corollary
Define E (N) := {m | m ⩽ N, σ(R) = m for some ring R}.

1. |E (N)| ⩽ 144N
log2 N

2. lim
N→∞

|E (N)|
N = 0

3. Almost all positive integers are not the covering number of a ring
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THANK YOU!
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