The Covering Numbers of Rings II

Nicholas J. Werner (joint with Eric Swartz)

SUNY at Old Westbury

July 14, 2025

Rings, Subrings, and Covers

For this talk:

- A ring *R* is an associative ring with unity.
- A subring S of R need not have a multiplicative identity.
 Subring = group under +, closed under mult.

Let R be a ring.

• A cover of R is a collection C of proper subrings of R whose union is all of R:

$$R = \bigcup_{S \in \mathcal{C}} S$$

- R is coverable if and only if a cover exists.
- The covering number of *R* is the minimum number of subrings necessary to cover *R*.
- $\sigma(R) = \text{covering number of } R$. If R is not coverable, then we set $\sigma(R) = \infty$

σ -elementary Rings

Recall: $\sigma(R) \leqslant \sigma(R/I)$ for any two-sided ideal I

Definition

R is σ -elementary if $\sigma(R) < \sigma(R/I)$ for every non-zero two-sided ideal of R.

- A σ -elementary ring must be coverable, since $\sigma(R) < \sigma(\{0\}) = \infty$.
- If R is coverable but **not** σ -elementary, then $\sigma(R) = \sigma(R/I)$ for some I.
- If R admits a finite cover, then $\sigma(R) = \sigma(R')$ for some σ -elementary ring R' that is a residue ring of R.
- If $n \in \mathbb{N}$ occurs as a covering number of a ring, then n is the covering number of some σ -elementary ring.

σ -elementary Rings

Recall: $\sigma(R) \leqslant \sigma(R/I)$ for any two-sided ideal I

Definition

R is σ -elementary if $\sigma(R) < \sigma(R/I)$ for every non-zero two-sided ideal of R.

- A σ -elementary ring must be coverable, since $\sigma(R) < \sigma(\{0\}) = \infty$.
- If R is coverable but **not** σ -elementary, then $\sigma(R) = \sigma(R/I)$ for some I.
- If R admits a finite cover, then $\sigma(R) = \sigma(R')$ for some σ -elementary ring R' that is a residue ring of R.
- If $n \in \mathbb{N}$ occurs as a covering number of a ring, then n is the covering number of some σ -elementary ring.

Goal: classify all σ -elementary rings

Theorem (Swartz, W. (2024))

Let R be a σ -elementary ring.

Theorem (Swartz, W. (2024))

Let R be a σ -elementary ring.

Then, R is a finite ring of characteristic p, and one of the following holds.

1. If R is commutative and semisimple, then R is a direct sum of copies of \mathbb{F}_q . For some prime power q, $R \cong \bigoplus_{i=1}^{\tau(q)} \mathbb{F}_q$

Theorem (Swartz, W. (2024))

Let R be a σ -elementary ring.

- 1. If R is commutative and semisimple, then R is a direct sum of copies of \mathbb{F}_q . For some prime power q, $R \cong \bigoplus_{i=1}^{\tau(q)} \mathbb{F}_q$
- 2. If R is commutative but not semisimple, then R is an idealization. For some prime power q, $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$

Theorem (Swartz, W. (2024))

Let R be a σ -elementary ring.

- 1. If R is commutative and semisimple, then R is a direct sum of copies of \mathbb{F}_q . For some prime power q, $R \cong \bigoplus_{i=1}^{\tau(q)} \mathbb{F}_q$
- 2. If R is commutative but not semisimple, then R is an idealization. For some prime power q, $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$
- 3. If R is noncommutative and semisimple, then R is a matrix ring. For some prime power q and integer $n \ge 2$, $R \cong M_n(q)$

Theorem (Swartz, W. (2024))

Let R be a σ -elementary ring.

- 1. If R is commutative and semisimple, then R is a direct sum of copies of \mathbb{F}_q . For some prime power q, $R \cong \bigoplus_{i=1}^{\tau(q)} \mathbb{F}_q$
- 2. If R is commutative but not semisimple, then R is an idealization. For some prime power q, $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$
- 3. If R is noncommutative and semisimple, then R is a matrix ring. For some prime power q and integer $n \ge 2$, $R \cong M_n(q)$
- 4. If R is noncommutative and not semisimple, then R is a ring of AGL-type.

Summary of Formulas

Let R be a σ -elementary ring.

1. If R is commutative and semisimple, then $R \cong \bigoplus_{i=1}^{\tau(q)} \mathbb{F}_q$, $q = p^d$, and

$$\sigma(R) = \tau(q)\nu(q) + d\binom{\tau(q)}{2}$$

- 2. If R is commutative but not semisimple, then $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$, and $\sigma(R) = q+1$
- 3. If R is noncommutative and semisimple, then $R\cong M_n(q)$, a is the smallest prime divisor of n, and

$$\sigma(R) = \frac{1}{a} \prod_{k=1, a \nmid k}^{n-1} (q^n - q^k) + \sum_{k=1, a \nmid k}^{\lfloor n/2 \rfloor} {n \choose k}_q$$

4. If R is noncommutative and not semisimple, then (barring small exceptions), $R \cong A(n, q_1, q_2), n \geqslant 3, q = q_1^d, d < n$, and

$$\sigma(R) = q^n + \binom{n}{d}_{q_1} + \omega(d)$$

Summary of Formulas

Let R be a σ -elementary ring.

1. If R is commutative and semisimple, then $R \cong \bigoplus_{i=1}^{\tau(q)} \mathbb{F}_q$, $q = p^d$, and

$$\sigma(R) = \tau(q)\nu(q) + d\binom{\tau(q)}{2}$$

- 2. If R is commutative but not semisimple, then $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$, and $\sigma(R) = q+1$
- 3. If R is noncommutative and semisimple, then $R \cong M_n(q)$, a is the smallest prime divisor of n, and

$$\sigma(R) = \frac{1}{a} \prod_{k=1, a \nmid k}^{n-1} (q^n - q^k) + \sum_{k=1, a \nmid k}^{\lfloor n/2 \rfloor} {n \choose k}_q$$

4. If R is noncommutative and not semisimple, then (barring small exceptions), $R \cong A(n, q_1, q_2), n \geqslant 3, q = q_1^d, d < n$, and

$$\sigma(R) = q^n + \binom{n}{d}_{q_1} + \omega(d)$$

All possible covering numbers of rings come from these formulas!!

Summary of Formulas

Let R be a σ -elementary ring.

1. If R is commutative and semisimple, then $R \cong \bigoplus_{i=1}^{\tau(q)} \mathbb{F}_q$, $q = p^d$, and

$$\sigma(R) = \tau(q)\nu(q) + d\binom{\tau(q)}{2}$$

Bounds: $\frac{q^2}{d^2} \leqslant \sigma(R) \leqslant \frac{q^2}{2d}$

- 2. If R is commutative but not semisimple, then $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$, and $\sigma(R) = q+1$
- 3. If R is noncommutative and semisimple, then $R \cong M_n(q)$, a is the smallest prime divisor of n, and

$$\sigma(R) = \frac{1}{a} \prod_{k=1, a \nmid k}^{n-1} (q^n - q^k) + \sum_{k=1, a \nmid k}^{\lfloor n/2 \rfloor} {n \choose k}_q$$
Bounds: $q^{n(n-(n/a)-1)} \leqslant \sigma(R) \leqslant q^{n(n-(n/a))}$

4. If R is noncommutative and not semisimple, then (barring small exceptions), $R \cong A(n, q_1, q_2), n \geqslant 3, q = q_1^d, d < n$, and

$$\sigma(R) = q^n + \binom{n}{d}_{q_1} + \omega(d)$$

Bounds: $q^n \leq \sigma(R) \leq q^n + q^{n-d+1} + d$

All possible covering numbers of rings come from these formulas!!

Reductions 1 and 2: Finite Rings of Order p^n

Theorem (B. H. Neumann, J. Lewin)

Let R be a coverable ring such that $\sigma(R)$ is finite. Then, there exists a two-sided ideal I of R such that R/I is finite and $\sigma(R) = \sigma(R/I)$.

Chinese Remainder Theorem

Let R be a finite ring. Then, R is isomorphic to a direct product of rings of prime power order:

$$R \cong R_1 \times R_2 \times \cdots \times R_m$$
, where $|R_i| = p_i^{d_i}$ for distinct primes p_1, \dots, p_m .

Also, if S is a subring of R, then $S \cong S_1 \times S_2 \times \cdots \times S_m$, where each S_i is a subring of R_i .

Reductions 1 and 2: Finite Rings of Order p^n

Theorem (B. H. Neumann, J. Lewin)

Let R be a coverable ring such that $\sigma(R)$ is finite. Then, there exists a two-sided ideal I of R such that R/I is finite and $\sigma(R) = \sigma(R/I)$.

Chinese Remainder Theorem

Let R be a finite ring. Then, R is isomorphic to a direct product of rings of prime power order:

$$R \cong R_1 \times R_2 \times \cdots \times R_m$$
, where $|R_i| = p_i^{d_i}$ for distinct primes p_1, \dots, p_m .

Also, if S is a subring of R, then $S \cong S_1 \times S_2 \times \cdots \times S_m$, where each S_i is a subring of R_i .

Corollary

Let R be as above. If R is coverable, then $\sigma(R) = \min_{1 \le i \le m} \sigma(R_i)$.

Reduction 3: Rings of Characteristic p

Proposition (Swartz, W. (2021))

Let R be a finite coverable ring of order p^n .

Then $\sigma(R) = \sigma(R/pR)$.

Reduction 3: Rings of Characteristic p

Proposition (Swartz, W. (2021))

Let R be a finite coverable ring of order p^n .

Then $\sigma(R) = \sigma(R/pR)$.

Proof sketch:

• Show that $pR \subseteq M$ for **every** maximal subring M of R.

Reduction 3: Rings of Characteristic p

Proposition (Swartz, W. (2021))

Let R be a finite coverable ring of order p^n .

Then $\sigma(R) = \sigma(R/pR)$.

Proof sketch:

- Show that $pR \subseteq M$ for **every** maximal subring M of R.
- Since pR is contained in every maximal subring, any minimal cover of R can be pushed forward onto R/pR.

So,
$$\sigma(R/pR) \leqslant \sigma(R)$$
.

• But, $\sigma(R) \leqslant \sigma(R/pR)$. Thus, $\sigma(R/pR) = \sigma(R)$.

Wedderburn-Malcev Theorem

Let R be a finite ring characteristic p.

Let J be the Jacobson radical of R (J = intersection of max. ideals).

There exists a semisimple (direct sum of mat. rings) \mathbb{F}_p -subalgebra S of R such that:

- $R = S \oplus J$
- $S \cong R/J$

Wedderburn-Malcev Theorem

Let R be a finite ring characteristic p.

Let J be the Jacobson radical of R (J = intersection of max. ideals).

There exists a semisimple (direct sum of mat. rings) \mathbb{F}_p -subalgebra S of R such that:

- $R = S \oplus J$
- S ≅ R/J
- S is unique up to conjugation by elements of 1 + J

Wedderburn-Malcev Theorem

Let R be a finite ring characteristic p.

Let J be the Jacobson radical of R (J = intersection of max. ideals).

There exists a semisimple (direct sum of mat. rings) \mathbb{F}_p -subalgebra S of R such that:

- $R = S \oplus J$
- S ≅ R/J
- ullet S is unique up to conjugation by elements of 1+J

Theorem (Swartz, W. (2021))

Let R be a finite coverable ring of characteristic p.

Then, J^2 is contained in every maximal subring of R.

Thus, $\sigma(R) = \sigma(R/J^2)$.

Wedderburn-Malcev Theorem

Let R be a finite ring characteristic p.

Let J be the Jacobson radical of R (J = intersection of max. ideals).

There exists a semisimple (direct sum of mat. rings) \mathbb{F}_p -subalgebra S of R such that:

- $R = S \oplus J$
- S ≅ R/J
- ullet S is unique up to conjugation by elements of 1+J

Theorem (Swartz, W. (2021))

Let R be a finite coverable ring of characteristic p.

Then, J^2 is contained in every maximal subring of R.

Thus, $\sigma(R) = \sigma(R/J^2)$.

Corollary

If $\sigma(R)$ is finite, then to find $\sigma(R)$ it suffices to consider residue rings of R that are finite; have characteristic p; and have $J^2 = 0$.

Proposition (Swartz, W. (2021))

Let R be a σ -elementary ring, and let C be a minimal cover of R.

Let T be a maximal subring of R that has an ideal complement in R.

That is $R = T \oplus I$ for some two-sided ideal I of R.

Then

conjugates of T in $R \leqslant \sigma(R) < \sigma(T)$

Proposition (Swartz, W. (2021))

Let R be a σ -elementary ring, and let \mathcal{C} be a minimal cover of R.

Let T be a maximal subring of R that has an ideal complement in R.

That is $R = T \oplus I$ for some two-sided ideal I of R.

Then

$$\#$$
 conjugates of T in $R \leqslant \sigma(R) < \sigma(T)$

Proof sketch:

• Certainly, $\sigma(R) \leqslant \sigma(R/I) = \sigma(T)$.

Proposition (Swartz, W. (2021))

Let R be a σ -elementary ring, and let \mathcal{C} be a minimal cover of R.

Let T be a maximal subring of R that has an ideal complement in R.

That is $R = T \oplus I$ for some two-sided ideal I of R.

Then

$$\#$$
 conjugates of T in $R \leqslant \sigma(R) < \sigma(T)$

Proof sketch:

- Certainly, $\sigma(R) \leqslant \sigma(R/I) = \sigma(T)$.
- But, R is σ -elementary, so $\sigma(R) < \sigma(T)$.

Proposition (Swartz, W. (2021))

Let R be a σ -elementary ring, and let \mathcal{C} be a minimal cover of R.

Let T be a maximal subring of R that has an ideal complement in R.

That is $R = T \oplus I$ for some two-sided ideal I of R.

Then

conjugates of T in R
$$\leq \sigma(R) < \sigma(T)$$

Proof sketch:

- Certainly, $\sigma(R) \leqslant \sigma(R/I) = \sigma(T)$.
- But, R is σ -elementary, so $\sigma(R) < \sigma(T)$.
- If $T \notin C$, then contract each subring in C to T to get a cover of T. So,

$$\sigma(T) \leqslant |\mathcal{C}| = \sigma(R).$$

Contradiction!

Proposition (Swartz, W. (2021))

Let R be a σ -elementary ring, and let \mathcal{C} be a minimal cover of R.

Let T be a maximal subring of R that has an ideal complement in R.

That is $R = T \oplus I$ for some two-sided ideal I of R.

conjugates of T in R $\leq \sigma(R) < \sigma(T)$

Proof sketch:

- Certainly, $\sigma(R) \leqslant \sigma(R/I) = \sigma(T)$.
- But, R is σ -elementary, so $\sigma(R) < \sigma(T)$.
- If $T \notin C$, then contract each subring in C to T to get a cover of T. So,

$$\sigma(T) \leqslant |\mathcal{C}| = \sigma(R).$$

Contradiction!

• Conclusion: T, and every conjugate of T, must be in C.

Proposition (Swartz, W. (2021))

Let R be a σ -elementary ring, and let \mathcal{C} be a minimal cover of R.

Let T be a maximal subring of R that has an ideal complement in R.

That is $R = T \oplus I$ for some two-sided ideal I of R. Then

conjugates of T in R $\leq \sigma(R) < \sigma(T)$

Proof sketch:

- Certainly, $\sigma(R) \leqslant \sigma(R/I) = \sigma(T)$.
- But, R is σ -elementary, so $\sigma(R) < \sigma(T)$.
- If $T \notin \mathcal{C}$, then contract each subring in \mathcal{C} to T to get a cover of T. So,

$$\sigma(T) \leqslant |\mathcal{C}| = \sigma(R).$$

Contradiction!

• Conclusion: T, and every conjugate of T, must be in C.

How to use this: If T has "too many" conjugates, then R is **not** σ -elementary!

Assumptions so far:

- R: finite, characteristic p
- J: Jacobson radical of R, $J^2 = 0$
- $R = S \oplus J$, where $S \cong R/J$ is semisimple
- ullet S is unique up to conjugation by elements of 1+J

Assumptions so far:

- R: finite, characteristic p
- J: Jacobson radical of R, $J^2 = 0$
- $R = S \oplus J$, where $S \cong R/J$ is semisimple
- ullet S is unique up to conjugation by elements of 1+J

Fix a choice for S

Assumptions so far:

- R: finite, characteristic p
- J: Jacobson radical of R, $J^2 = 0$
- $R = S \oplus J$, where $S \cong R/J$ is semisimple
- S is unique up to conjugation by elements of 1 + J

Fix a choice for S

Then, for some $N \geqslant 1$,

• $S = \bigoplus_{i=1}^N S_i$, where each S_i is a simple ring: $S_i \cong M_{n_i}(q_i)$ $(n_i \geqslant 1, q_i = p^{d_i})$

Assumptions so far:

- R: finite, characteristic p
- J: Jacobson radical of R, $J^2 = 0$
- $R = S \oplus J$, where $S \cong R/J$ is semisimple
- S is unique up to conjugation by elements of 1 + J

Fix a choice for S

Then, for some $N \geqslant 1$,

- $S = \bigoplus_{i=1}^{N} S_i$, where each S_i is a simple ring: $S_i \cong M_{n_i}(q_i)$ $(n_i \geqslant 1, q_i = p^{d_i})$
- Let $e_i = 1_{S_i}$. Then, e_1, \ldots, e_N are orthogonal idempotents and $\sum_i e_i = 1_R$

Assumptions so far:

- R: finite, characteristic p
- J: Jacobson radical of R, $J^2 = 0$
- $R = S \oplus J$, where $S \cong R/J$ is semisimple
- S is unique up to conjugation by elements of 1 + J

Fix a choice for S

Then, for some $N \geqslant 1$,

- $S = \bigoplus_{i=1}^{N} S_i$, where each S_i is a simple ring: $S_i \cong M_{n_i}(q_i)$ $(n_i \geqslant 1, q_i = p^{d_i})$
- Let $e_i = 1_{S_i}$. Then, e_1, \ldots, e_N are orthogonal idempotents and $\sum_i e_i = 1_R$
- Perform a Peirce decomposition of *J*:

$$J = \bigoplus_{1 \leq i, j \leq n} e_i J e_j$$

Each $e_i J e_i$ is an (S_i, S_i) -bimodule.

Assumptions so far:

- R: finite, characteristic p
- J: Jacobson radical of R, $J^2 = 0$
- $R = S \oplus J$, where $S \cong R/J$ is semisimple
- S is unique up to conjugation by elements of 1 + J

Fix a choice for S

Then, for some $N \geqslant 1$,

- $S = \bigoplus_{i=1}^{N} S_i$, where each S_i is a simple ring: $S_i \cong M_{n_i}(q_i)$ $(n_i \geqslant 1, q_i = p^{d_i})$
- Let $e_i = 1_{S_i}$. Then, e_1, \ldots, e_N are orthogonal idempotents and $\sum_i e_i = 1_R$
- Perform a Peirce decomposition of *J*:

$$J = \bigoplus_{1 \leqslant i,j \leqslant n} e_i J e_j$$

Each $e_i J e_i$ is an (S_i, S_i) -bimodule.

• Because $J^2 = 0$, each $e_i J e_j$ is a two-sided ideal of R!!

Restrictions on σ -elementary Rings

Assumptions:

- R: finite, characteristic p, $R = S \oplus J$
- *J*: Jacobson radical of R, $J^2 = 0$
- $S = \bigoplus_{i=1}^N S_i$, $e_i = 1_{S_i}$

Consequences of Peirce Decomposition of J:

• For all $1 \leqslant i, j \leqslant N$, $e_i J e_j$ is a two-sided ideal of R.

Restrictions on σ -elementary Rings

Assumptions:

- R: finite, characteristic p, $R = S \oplus J$
- J: Jacobson radical of R, $J^2 = 0$
- $S = \bigoplus_{i=1}^N S_i$, $e_i = 1_{S_i}$

Consequences of Peirce Decomposition of J:

- For all $1 \le i, j \le N$, $e_i J e_j$ is a two-sided ideal of R.
- Any two-sided ideal $I \subseteq J$ has an ideal complement \widehat{I} in $J \colon J = I \oplus \widehat{I}$

Restrictions on σ -elementary Rings

Assumptions:

- R: finite, characteristic p, $R = S \oplus J$
- J: Jacobson radical of R, $J^2 = 0$
- $S = \bigoplus_{i=1}^N S_i$, $e_i = 1_{S_i}$

Consequences of Peirce Decomposition of J:

- For all $1 \le i, j \le N$, $e_i J e_j$ is a two-sided ideal of R.
- Any two-sided ideal $I \subseteq J$ has an ideal complement \widehat{I} in $J \colon J = I \oplus \widehat{I}$
- Assume I is a maximal subideal of J. Let $T = S \oplus I$. Then, T is a maximal subring of R, and $R = T \oplus \widehat{I}$, and $T \cong R/\widehat{I}$.

Restrictions on σ -elementary Rings

Assumptions:

- R: finite, characteristic p, $R = S \oplus J$
- J: Jacobson radical of R, $J^2 = 0$
- $S = \bigoplus_{i=1}^N S_i$, $e_i = 1_{S_i}$

Consequences of Peirce Decomposition of J:

- For all $1 \leqslant i, j \leqslant N$, $e_i J e_j$ is a two-sided ideal of R.
- Any two-sided ideal $I \subseteq J$ has an ideal complement \widehat{I} in $J: J = I \oplus \widehat{I}$
- Assume I is a maximal subideal of J. Let $T = S \oplus I$. Then, T is a maximal subring of R, and $R = T \oplus \widehat{I}$, and $T \cong R/\widehat{I}$.
- ullet By the "Too Many Conjugates" Principle, if R is σ -elementary, then

conjugates of T in R
$$\leq \sigma(R) < \sigma(T)$$

Restrictions on σ -elementary Rings

Assumptions:

- R: finite, characteristic p, $R = S \oplus J$
- J: Jacobson radical of R, $J^2 = 0$
- $S = \bigoplus_{i=1}^N S_i$, $e_i = 1_{S_i}$

Consequences of Peirce Decomposition of J:

- For all $1 \leqslant i, j \leqslant N$, $e_i J e_j$ is a two-sided ideal of R.
- Any two-sided ideal $I \subseteq J$ has an ideal complement \widehat{I} in $J: J = I \oplus \widehat{I}$
- Assume I is a maximal subideal of J. Let $T = S \oplus I$. Then, T is a maximal subring of R, and $R = T \oplus \widehat{I}$, and $T \cong R/\widehat{I}$.
- ullet By the "Too Many Conjugates" Principle, if R is σ -elementary, then

conjugates of T in R
$$\leq \sigma(R) < \sigma(T)$$

- Roughly speaking, we end up with lots of conjugates whenever:
 - ▶ S_i is noncommutative and $e_i Je_i \neq 0$; or
 - ▶ Both S_i and S_j are noncommutative and $e_i Je_j \neq 0$; or
 - ▶ S_i is noncommutative, S_j is a field, $e_i J e_j$ is not a simple (S_i, S_j) -bimodule

Restrictions on σ -elementary Rings

Assumptions:

- R: finite, characteristic p, $R = S \oplus J$
- J: Jacobson radical of R, $J^2 = 0$
- $S = \bigoplus_{i=1}^N S_i$, $e_i = 1_{S_i}$

Consequences of Peirce Decomposition of J:

- For all $1 \leqslant i, j \leqslant N$, $e_i J e_j$ is a two-sided ideal of R.
- Any two-sided ideal $I \subseteq J$ has an ideal complement \widehat{I} in $J \colon J = I \oplus \widehat{I}$
- Assume I is a maximal subideal of J. Let $T = S \oplus I$. Then, T is a maximal subring of R, and $R = T \oplus \widehat{I}$, and $T \cong R/\widehat{I}$.
- ullet By the "Too Many Conjugates" Principle, if R is σ -elementary, then

$$\#$$
 conjugates of T in $R \leqslant \sigma(R) < \sigma(T)$

- Roughly speaking, we end up with lots of conjugates whenever:
 - ▶ S_i is noncommutative and $e_i Je_i \neq 0$; or
 - ▶ Both S_i and S_j are noncommutative and $e_i J e_j \neq 0$; or
 - \triangleright S_i is noncommutative, S_j is a field, $e_i J e_j$ is not a simple (S_i, S_j) -bimodule

Assume R is σ -elementary.

• There is at most one pair (i,j) with $e_i J e_j \neq 0$.

- There is at most one pair (i,j) with $e_i J e_j \neq 0$.
- If $e_i J e_j = 0$ for all $1 \leqslant i, j \leqslant N$, then R is semisimple.
 - ▶ Commutative case: $R \cong \bigoplus_{k=1}^{\tau(q)} \mathbb{F}_q$
 - ▶ Noncommutative case: $R \cong M_n(q)$

- There is at most one pair (i,j) with $e_i J e_j \neq 0$.
- If $e_i J e_j = 0$ for all $1 \leqslant i, j \leqslant N$, then R is semisimple.
 - ► Commutative case: $R \cong \bigoplus_{k=1}^{\tau(q)} \mathbb{F}_q$
- ▶ Noncommutative case: $R \cong M_n(q)$
- Suppose $e_i J e_i \neq 0$.
 - ▶ Commutative case: $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$
 - Noncommutative case: can't happen! (too many conjugates)

- There is at most one pair (i,j) with $e_i J e_j \neq 0$.
- If $e_i J e_j = 0$ for all $1 \leqslant i, j \leqslant N$, then R is semisimple.
 - ► Commutative case: $R \cong \bigoplus_{k=1}^{\tau(q)} \mathbb{F}_q$
 - ▶ Noncommutative case: $R \cong M_n(q)$
- Suppose $e_i J e_i \neq 0$.
 - ▶ Commutative case: $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$
 - Noncommutative case: can't happen! (too many conjugates)
- Suppose $e_i J e_i \neq 0$ with $i \neq j$.

- There is at most one pair (i,j) with $e_i J e_j \neq 0$.
- If $e_i J e_j = 0$ for all $1 \leqslant i, j \leqslant N$, then R is semisimple.
 - ightharpoonup Commutative case: $R \cong \bigoplus_{k=1}^{\tau(q)} \mathbb{F}_q$
 - ▶ Noncommutative case: $R \cong M_n(q)$
- Suppose $e_i J e_i \neq 0$.
 - ▶ Commutative case: $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$
 - ▶ Noncommutative case: can't happen! (too many conjugates)
- Suppose $e_i J e_i \neq 0$ with $i \neq j$.
 - ▶ Commutative case: can't happen! (for $x \in e_i Je_i \setminus \{0\}$, $e_i x = x$ but $xe_i = 0$)

- There is at most one pair (i,j) with $e_i J e_j \neq 0$.
- If $e_i J e_j = 0$ for all $1 \leqslant i, j \leqslant N$, then R is semisimple.
 - ► Commutative case: $R \cong \bigoplus_{k=1}^{\tau(q)} \mathbb{F}_q$
- ▶ Noncommutative case: $R \cong M_n(q)$
- Suppose $e_i J e_i \neq 0$.
 - ▶ Commutative case: $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$
 - ▶ Noncommutative case: can't happen! (too many conjugates)
- Suppose $e_i J e_i \neq 0$ with $i \neq j$.
 - ▶ Commutative case: can't happen! (for $x \in e_i Je_i \setminus \{0\}$, $e_i x = x$ but $xe_i = 0$)
 - Noncommutative case: R is an AGL-type ring.

Assume R is σ -elementary.

- There is at most one pair (i,j) with $e_i J e_j \neq 0$.
- If $e_i J e_j = 0$ for all $1 \le i, j \le N$, then R is semisimple.
 - ▶ Commutative case: $R \cong \bigoplus_{k=1}^{\tau(q)} \mathbb{F}_q$
 - ▶ Noncommutative case: $R \cong M_n(q)$
- Suppose $e_i J e_i \neq 0$.
 - ▶ Commutative case: $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$
 - ▶ Noncommutative case: can't happen! (too many conjugates)
- Suppose $e_i J e_i \neq 0$ with $i \neq j$.
 - ▶ Commutative case: can't happen! (for $x \in e_i Je_i \setminus \{0\}$, $e_i x = x$ but $xe_i = 0$)
 - ▶ Noncommutative case: *R* is an AGL-type ring.

WLOG,
$$S_i = M_n(q_i)$$
 and $S_j = \mathbb{F}_{q_j}$.

Then, $e_i J e_j$ must be a simple (S_i, S_j) -bimodule:

$$e_i \textit{J} e_j \cong \textit{M}_{\textit{n} imes 1}(q), \quad q = ext{order of compositum of } \mathbb{F}_{q_i} \text{ and } \mathbb{F}_{q_j}$$

We get
$$R\cong\left(egin{array}{c|c} M_n(q_i)&M_{n imes 1}(q)\ \hline 0&\mathbb{F}_{q_j} \end{array}
ight)$$

We can relate covers of non-unital rings (rngs) with coverings of unital rings.

We can relate covers of non-unital rings (rngs) with coverings of unital rings.

Dorroh Extension

Let R be a rng of characteristic $n \ge 0$.

We can relate covers of non-unital rings (rngs) with coverings of unital rings.

Dorroh Extension

Let R be a rng of characteristic $n \ge 0$.

The Dorroh extension or unitization of R is the ring

$$R^1 := \mathbb{Z}_n \times R$$

with operations

$$(n_1, r_1) + (n_2, r_2) = (n_1 + n_2, r_1 + r_2)$$

$$(n_1, r_1)(n_2, r_2) = (n_1 n_2, n_1 r_2 + n_2 r_1 + r_1 r_2)$$

We can relate covers of non-unital rings (rngs) with coverings of unital rings.

Dorroh Extension

Let R be a rng of characteristic $n \ge 0$.

The Dorroh extension or unitization of R is the ring

$$R^1 := \mathbb{Z}_n \times R$$

with operations

$$(n_1, r_1) + (n_2, r_2) = (n_1 + n_2, r_1 + r_2)$$

$$(n_1, r_1)(n_2, r_2) = (n_1 n_2, n_1 r_2 + n_2 r_1 + r_1 r_2)$$

Properties:

- \bullet R^1 is a ring with identity element (1,0)
- R embeds into R^1 via $r \mapsto (0, r)$

Unital Covers

Definition

Let R be a ring with unity. Assume R can be covered by proper subrings containing $\mathbf{1}_R$.

Let $\sigma_u(R)$ be the size of a minimal cover of R by proper subrings containing 1_R .

We call $\sigma_u(R)$ the unital covering number of R.

Unital Covers

Definition

Let R be a ring with unity. Assume R can be covered by proper subrings containing $\mathbf{1}_R$.

Let $\sigma_u(R)$ be the size of a minimal cover of R by proper subrings containing 1_R .

We call $\sigma_u(R)$ the unital covering number of R.

Theorems (Swartz, W. (2024))

1. Let R be a ring with unity. Assume R can be covered by proper subrings containing 1_R .

Then, $\sigma_u(R) = \sigma(R)$.

Unital Covers

Definition

Let R be a ring with unity. Assume R can be covered by proper subrings containing $\mathbf{1}_R$.

Let $\sigma_u(R)$ be the size of a minimal cover of R by proper subrings containing 1_R .

We call $\sigma_u(R)$ the unital covering number of R.

Theorems (Swartz, W. (2024))

- 1. Let R be a ring with unity. Assume R can be covered by proper subrings containing 1_R .
 - Then, $\sigma_u(R) = \sigma(R)$.
- 2. Let R be a rng that has a finite cover. Let R^1 be the Dorroh extension of R. Then, $\sigma(R) = \sigma_n(R^1)$.

Summary of Formulas

Let R be a σ -elementary ring with unity.

1. If R is commutative and semisimple, then $R \cong \bigoplus_{i=1}^{\tau(q)} \mathbb{F}_q$, $q = p^d$, and

$$\sigma(R) = \tau(q)\nu(q) + d\binom{\tau(q)}{2}$$
Bounds: $\frac{q^2}{d^2} \le \sigma(R) \le \frac{q^2}{2d}$

- Bounds: $\frac{1}{d^2} \leqslant \sigma(R) \leqslant \frac{1}{2d}$
- 3. If R is noncommutative and semisimple, then $R \cong M_n(q)$, a is the smallest prime divisor of n, and

2. If R is commutative but not semisimple, then $R \cong \mathbb{F}_q(+)\mathbb{F}_q^2$, and $\sigma(R) = q+1$

$$\sigma(R) = \frac{1}{a} \prod_{k=1, a \nmid k}^{n-1} (q^n - q^k) + \sum_{k=1, a \nmid k}^{\lfloor n/2 \rfloor} {n \choose k}_q$$
Bounds: $q^{n(n-(n/a)-1)} \leqslant \sigma(R) \leqslant q^{n(n-(n/a))}$

4. If R is noncommutative and not semisimple, then (barring small exceptions), $R \cong A(n, q_1, q_2), n \geqslant 3, q = q_1^d, d < n$, and

$$\sigma(R) = q^n + \binom{n}{d}_{q_1} + \omega(d)$$
Bounds: $q^n \le \sigma(R) \le q^n + q^{n-d+1} + d$

All possible covering numbers of rings come from these formulas!!

Theorem (Swartz, W. (2024))

Form	Max # integers at most N
$ au(q) u(q)+dinom{ au(q)}{2}$	
q+1	
$\frac{1}{a}\prod_{k=1,a mid_k}^{n-1}(q^n-q^k)+\sum_{k=1,a mid_k}^{\lfloor n/2\rfloor}\binom{n}{k}_q$	
$q^n + \binom{n}{d}_{q_1} + \omega(d)$	

Theorem (Swartz, W. (2024))

Form	Max # integers at most N
$ au(q) u(q)+dinom{ au(q)}{2}$	8 <i>N</i> / log ₂ <i>N</i>
q+1	
$\frac{1}{a}\prod_{k=1,a\nmid k}^{n-1}(q^n-q^k)+\sum_{k=1,a\nmid k}^{\lfloor n/2\rfloor}\binom{n}{k}_q$	
$q^n + \binom{n}{d}_{q_1} + \omega(d)$	

Theorem (Swartz, W. (2024))

Form	Max # integers at most N
$ au(q) u(q)+dinom{ au(q)}{2}$	$8N/\log_2 N$
q+1	$8N/\log_2 N$
$\frac{1}{a}\prod_{k=1,a\nmid k}^{n-1}(q^n-q^k)+\sum_{k=1,a\nmid k}^{\lfloor n/2\rfloor}\binom{n}{k}_q$	
$q^n + \binom{n}{d}_{q_1} + \omega(d)$	

Theorem (Swartz, W. (2024))

Form	Max # integers at most N
$ au(q) u(q)+dinom{ au(q)}{2}$	$8N/\log_2 N$
q+1	$8N/\log_2 N$
$rac{1}{a}\prod_{k=1,a eq k}^{n-1}(q^n-q^k)+\sum_{k=1,a eq k}^{\lfloor n/2\rfloor}{n\choose k}_q$	56 <i>N</i> / log ₂ <i>N</i>
$q^n + \binom{n}{d}_{q_1} + \omega(d)$	

Theorem (Swartz, W. (2024))

Form	Max # integers at most N
$ au(q) u(q)+dinom{ au(q)}{2}$	8 <i>N</i> / log ₂ <i>N</i>
q+1	8 <i>N</i> / log ₂ <i>N</i>
$rac{1}{a}\prod_{k=1,a mid k}^{n-1}(q^n-q^k)+\sum_{k=1,a mid k}^{\lfloor n/2\rfloor}\binom{n}{k}_q$	56 <i>N</i> / log ₂ <i>N</i>
$q^n + \binom{n}{d}_{q_1} + \omega(d)$	$72N/\log_2 N$

Theorem (Swartz, W. (2024))

Let $N \in \mathbb{N}$, $N \geqslant 2$.

Form	Max # integers at most N
$ au(q) u(q)+dinom{ au(q)}{2}$	8 <i>N</i> / log ₂ <i>N</i>
q+1	8 <i>N</i> / log ₂ <i>N</i>
$rac{1}{a}\prod_{k=1,a eq k}^{n-1}(q^n-q^k)+\sum_{k=1,a eq k}^{\lfloor n/2\rfloor}{n\choose k}_q$	56 <i>N</i> / log ₂ <i>N</i>
$q^n + \binom{n}{d}_{q_1} + \omega(d)$	$72N/\log_2 N$

Corollary

Define $\mathscr{E}(N) := \{ m \mid m \leqslant N, \ \sigma(R) = m \text{ for some ring } R \}.$

Theorem (Swartz, W. (2024))

Let $N \in \mathbb{N}$, $N \geqslant 2$.

Form	Max # integers at most N
$ au(q) u(q)+dinom{ au(q)}{2}$	$8N/\log_2 N$
q+1	$8N/\log_2 N$
$rac{1}{a}\prod_{k=1,a eq k}^{n-1}(q^n-q^k)+\sum_{k=1,a eq k}^{\lfloor n/2\rfloor}{n\choose k}_q$	56 <i>N</i> / log ₂ <i>N</i>
$q^n + \binom{n}{d}_{q_1} + \omega(d)$	$72N/\log_2 N$

Corollary

Define $\mathscr{E}(N) := \{ m \mid m \leqslant N, \ \sigma(R) = m \text{ for some ring } R \}.$

- 1. $|\mathscr{E}(N)| \leqslant \frac{144N}{\log_2 N}$
- $2. \lim_{N \to \infty} \frac{|\mathscr{E}(N)|}{N} = 0$
- 3. Almost all positive integers are not the covering number of a ring

THANK YOU!

Selected References

- E. Crestani. Sets of elements that pairwise generate a matrix ring. Comm. Algebra 40 (2012), no. 4, 1570–1575.
- L.-C. Kappe. Finite coverings: a journey through groups, loops, rings, and semigroups, in Group Theory, Combinatorics, and Computing. Contemporary Mathematics, Vol. 611. Amer. Math. Soc., Providence, RI, 2014. 79–88.
- A. Lucchini, A. Maróti. Rings as the union of proper subrings. Algebr. Represent. Theory 15 (2012) 1035–1047.
- E. Swartz, N. Werner. Covering numbers of commutative rings. J. Pure Appl. Algebra 225 (2021), no. 8.
- E. Swartz, N. Werner. The covering numbers of rings. J. Algebra 639 (2024), 249–280.
- N. Werner. Covering numbers of finite rings. Amer. Math. Monthly 122 (2015), no. 6, 552–566.