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Notions from factorization theory

Let (H, ·) be a monoid, that is, a commutative, cancellative semigroup
with the identity element.

For an integral domain R, we set R• = (R\{0}, ·).
A non-unit element a ∈ H is called an atom if a = bc with b, c ∈ H
implies b ∈ H× or c ∈ H×. We denote the set of atoms of H by A(H).

If a = a1 · . . . · ak is a factorization into atoms, the k is called the length of
the factorization.

The length set of a:

L(a) = {k ∈ N : k is a factorization length of a}
For a finite nonempty set L ⊂ N, we denote by ρ(L) = max L/min L the
elasticity of L, and by ρ(H), defined as the supremum of ρ

(
L(a)

)
over all a

of H, the elasticity of H.
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Krull monoids

A monoid homomorphism φ : H → D is called a divisor homomorphism if,
for all a, b ∈ H, φ(a)|φ(b) (in D) implies that a|b (in H).

Definition

A monoid H is a Krull monoid if one of the following equivalent conditions is
satisfied.

(a) There is a divisor homomorphism φ : H → D, where D is a free abelian
monoid such that for every α ∈ D there is a finite nonempty set A ⊂ H
such that α = gcdφ(A).

(b) There is a divisor homomorphism from H into a free abelian monoid.

(c) H is completely integrally closed and satisfies the ascending chain
condition on divisorial ideals.

The class group of H is C(H) = q(D)/q(φ(H)).

Theorem

Let D be a domain. Then D• is a Krull monoid if and only if D is a Krull
domain. Integrally closed Notherian domain is a Krull domain.
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Transfer homomorphism

Definition

Let H and B be atomic monoids. Then a monoid homomorphism θ : H −→ B
is called a transfer homomorphism if the following properties are satisfied.

1) B = θ(H)B× and θ−1(B×) = H×.

2) If u ∈ H, b, c ∈ B and θ(u) = bc, then there exist v ,w ∈ H such that
u = vw , θ(v) ≃ b and θ(w) ≃ c.

Transfer homomorphisms preserve the arithmetic structure, particularly,
they preserve the sets of lengths and elasticity.
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Monoids of zero-sum sequences

Let G be an finite abelian group, and let G0 ⊂ G be a subset.

The elements of the free abelian monoid F(G0) with basis G0 are called
sequences over G0.

Let S = g1 · . . . · gℓ ∈ F(G0) be a sequence, we call σ(S) =
∑ℓ

i=1 gi ∈ G
the sum of S .

We call supp (S) = {g1, . . . , gℓ} ⊂ G the support of S .

Then S is called

a zero-sum sequence if σ(S) = 0,

squarefree if |S | = |supp (S)|.
B(G0) = {S ∈ F(G0) : σ(S) = 0} the monoid of zero-sum sequences over
G0.

Elements of A(B(G0)) are called minimal zero-sum sequences.

B(G0) is a Krull monoid

Since the inclusion B(G0) ↪→ F(G0) is a divisor homomorphism, Condition (b)
of the Definition implies that B(G0) is a Krull monoid.
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Transfer Krull monoids

Definition

A monoid H (respectively, a domain D) is said to be transfer Krull monoid over
G (respectively, a transfer Krull domain) if there exists a transfer
homomorphism θ : H −→ B(G) (respectively, θ : D \ {0} −→ B(G)).

Krull monoid (resp. domain) =⇒ transfer Krull monoid (resp. domain).

Transfer Krull monoid (resp. domain) ≠⇒ Krull monoid (resp. domain).

Examples

Transfer Krull monoids that are not Krull include

Orders in Dedekind domains.

Maximal order in central simple algebras over number fields.

Doniyor Yazdonov On the structure of length sets with maximal elasticity



Transfer Krull monoids

Definition

A monoid H (respectively, a domain D) is said to be transfer Krull monoid over
G (respectively, a transfer Krull domain) if there exists a transfer
homomorphism θ : H −→ B(G) (respectively, θ : D \ {0} −→ B(G)).

Krull monoid (resp. domain) =⇒ transfer Krull monoid (resp. domain).

Transfer Krull monoid (resp. domain) ≠⇒ Krull monoid (resp. domain).
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The Davenport constant of G

Let G be a finite abelian group, say G = Cn1 ⊕ . . .⊕ Cnr with r ∈ N and
1 < n1| . . . |nr , and set D∗(G) = 1 +

∑r
i=1(ni − 1).

D(G) = max{|U| : U ∈ A(B(G))} ∈ N is the Davenport constant of G .

We have D∗(G) ≤ D(G) and it is well-known that the equality holds for
p-groups, groups of rank r ≤ 2, and others.

In general, there are groups with D∗(G) < D(G).

So far, the groups C 4
2 ⊕ C2k with k ≥ 70 is odd, is only one series of

groups with D∗(G) < D(G), for which the precise value of the Davenport
constant is known.

Let H be a Krull monoid with finite class group G and suppose that each
class contains a prime divisor. Then it is known that ρ(H) = D(G)/2.
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We have D∗(G) ≤ D(G) and it is well-known that the equality holds for
p-groups, groups of rank r ≤ 2, and others.

In general, there are groups with D∗(G) < D(G).

So far, the groups C 4
2 ⊕ C2k with k ≥ 70 is odd, is only one series of

groups with D∗(G) < D(G), for which the precise value of the Davenport
constant is known.

Let H be a Krull monoid with finite class group G and suppose that each
class contains a prime divisor. Then it is known that ρ(H) = D(G)/2.
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Main results

Theorem (2025)

Let H be a transfer Krull monoid over a finite abelian group G with |G | ≥ 3.
Suppose that G has the following Property P.

P. There are g1, g2 ∈ G and minimal zero-sum sequences U1,U2 over G
such that

|U1| = |U2| = D(G), g1g2 | U1, and (g1 + g2) | U2 .

Then there exists some a∗ ∈ H such that for all elements a ∈ H with
ρ(L(a)) = ρ(H), the length set L(a∗a) is an interval with elasticity ρ(H).

In general, length sets L(a) with elasticity ρ(H) need not be intervals (in other
words, the above statement does not hold for a∗ = 1).
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On Property P

Theorem (2025)

Let G be a finite abelian group with |G | ≥ 3. Then Property

P. There are g1, g2 ∈ G and minimal zero-sum sequences U1,U2 over G
such that

|U1| = |U2| = D(G), g1g2 | U1, and (g1 + g2) | U2 .

is satisfied in each of the following cases.

(a) G is a cyclic group of odd order.

(b) G is not cyclic and D(G) = D∗(G).

(c) G has odd order and there is some U ∈ A(B(G)) of length |U| = D(G)
that is not squarefree.

(d) G = C 4
2 ⊕ C2k with k ≥ 70.

Note that there is known no non-cyclic group that does not satisfy Property P.
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On Property P∗

Define Property P∗ as follows: For every nonzero element g ∈ G , there is
some Ag ∈ A(B(G)) with |Ag | = D(G) and g ∈ supp(Ag ).

Clearly, Property P∗ =⇒ Property P.

Example

Suppose that G is an elementary p group of rank r and let g = e1 ∈ G \ {0}.
Then e1 can be extended to a basis, say (e1, e2, . . . , er ). Then

Ag = (e1 + . . .+ er )
r∏

i=1

ep−1
i

is a minimal zero-sum sequence of length |Ag | = D∗(G) = D(G) and with
g ∈ supp(Ag ).

Theorem (2025)

Let H be a transfer Krull monoid over a finite abelian group G satifying
Property P∗. Then there exists some a∗ ∈ H such that all elements a ∈ H with
ρ(L(a)) = ρ(H), length sets L(a∗a) are intervals with elasticity ρ(H).
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On cyclic group of even order

Theorem (2025)

Let H be a transfer Krull monoid over a cyclic group G of even order |G | ≥ 4.

1 There is no element a ∈ H with maximal elasticity such that
max L(a)− 1 ∈ L(a).

2 If |G |+1 /∈ P, then there exist a∗ ∈ H and M ∈ N0 such that for all a ∈ H
with ρ(L(a)) = ρ(H), L(a∗a) ∩ [min L(a∗a),max L(a∗a)−M] is an interval
and ρ(L(a∗a)) = ρ(H).

Particularly, this theorem implies that there is no element a ∈ H with
maximal elasticity such that L(a) is an interval.

This case is the only known exceptional case.
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Density Result (work in progress)

Corollary (2025)

If G has Property P, then

lim
n→∞

∣∣{A ∈ B(G) : |A| ≤ n, L(A) is an interval with ρ(L(A)) = D(G)/2
}∣∣∣∣{A ∈ B(G) : |A| ≤ n, ρ(L(A)) = D(G)/2

}∣∣ = 1
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Thank you for your attention!
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