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Isonoetherian modules over particular rings
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Terminolgy and examples

In the sequel
• R denotes an associative ring with unit,
• M a right R-module,
• a group means an abelain group (i.e. Z-module)

A right module M over R is called isonoetherian if for every
increasing chain M0 ≤ M1 ≤ . . . of submodules there exists n
such that Mm ∼= Mm+1 for each m ≥ n.
A ring R is right isonoetherian if RR is isonoetherian.

Example
(1) Every noetherian module is isonoetherian

(2) If D is a DVR with the fraction field Q then
(

D Q
0 D

)
is a right

isonoetherian ring which is not right noetharian.
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Tools

Lemma (Facchini, Nazemian)
A module M is isonoetherian if and only if, for every non-empty
set F of submodules of M, there exists N ∈ F such that L ∼= N,
for every L ≥ N.

Lemma
Let M be an isonoetherian module. Then there exist a finitely
generated submodule F and a chain of submodules
(Mi | i < ω) such that each finitely generated submodule
containing F is isomorphic to F and
(1) each finitely generated submodule of M/F is noetherian,
(2) M0 = F, Mi ⊆ Mi+1 for each i and M =

⋃
i Mi ,

(3) Mi+1/Mi is essential in M/Mi and it is a direct sum of
noetherian cyclic submodules.
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Closure properties

Proposition
Let M be an isonoetherian module over a ring R.
(1) (Facchini, Nazemian) M has finite Goldie dimension,
(2) if R semilocal, then gen(M) ≤ ω,
(3) if R is commutative and κ is an infinite cardinal grater then

the cardinality of the set of all maximal ideals, then
gen(M) ≤ κ.

Proposition (Facchini, Nazemian)

(1) Being isonoetherian is a Morita invariant property of
modules,

(2) the product
∏

i∈I Ri of rings is right isonoetherian if and
only if I is finite and every Ri is right isonoetherian.
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Chain rings

Lemma (Facchini, Nazemian)
A right chain domain is right isonoetherian if and only if it
satisfies the ACC on infinitely generated right ideals.

Theorem (Facchini, Nazemian)
If a commutative valuation domain R is isonoetherian, then R
has at most three prime ideals and PP is a principal ideal of the
localization RP for every prime ideal P.

Theorem (Facchini, Nazemian)
Every discrete valuation domain of Krull dimension 2 i is
isonoetherian.
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Perfect rings

Lemma
If M is an isonoetherian module over a semilocal ring, then for
every submodule N there exist a finitely generated submodule
F ⊆ N such that N is countably generated and N/F = (N/F )J.

Theorem
Let M be a module over a right perfect ring R. Then M is
isonoetherian iff it is noetherian.



Perfect rings

Lemma
If M is an isonoetherian module over a semilocal ring, then for
every submodule N there exist a finitely generated submodule
F ⊆ N such that N is countably generated and N/F = (N/F )J.

Theorem
Let M be a module over a right perfect ring R. Then M is
isonoetherian iff it is noetherian.



Abelian groups

Lemma
Let M be an isonoetherian group with the torsion part T . Then
(1) T is finite and there exist a torsion-free submodule N of a

finite rank such that M = F ⊕ T ,
(2) if F is a free subgroup of M such that rank(F ) = rank(M),

then M/F contains unbounded p-subgroups for only
finitely many prime numbers p.

Proposition
Let F be a free group of finite rank, and M be any group. Then
M is isonoetherian if and only if M ⊕ F is isonoetherian.
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Necessary conditions
Let M be a torsion-free group of a finite rank and F ≤ M a
subgroup of the same rank. Denote by dp(M) the rank of
p-component of the divisible part of M/F .

Proposition
Let M be a torsion-free isonoetherian group with finitely
generated subgroup F such that M/F ∼= Z2

p∞ . Then ∃
indecomposable subgroups A1,A2 ≤ M such that
dp(A1) = dp(A2) = 1, dp(A1 + A2) = 2. Let A1 and A2 be such
and A = A1 + A2. Then ∃ α ∈ Aut(A), and a sequence of finitely
generated subgroups F0 ≤ F1 ≤ . . . such that
(1) α̃ = p · µ for algebraic µ ∈ Ẑ∗

p where the endomorphisms
α̃ ∈ End(A/F0) is induced by α,

(2) α(C) = C for each C ≤ A which is indecomposable and
pure and dp(C) = 1,

(3) A1 ∩ A2 ≤ F0, α(Fi) = Fi−1 for all i > 0, and α(A1) = A1,
α(A2) = A2, α(A1 ∩ A2) = A1 ∩ A2.
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Decomposable case

Proposition
Let p be prime and A an indecomposable torsion-free group
such that rank(A) > 1 and A/G ∼= Zp∞ for a finitely generated
subgroup G . Then A ⊕ Z[1

p ] is not isonoetherian.

Theorem (Keef)
Suppose G is a completely decomposable torsion-free group of
finite rank. Then G is isonoetherian exactly in the following
three cases:
(1) G ∼= Z[1/(p1 · · · pk )]⊕ A, where the ps are distinct primes

and A is free.
(2) G ∼= Z[1/p]2 ⊕ A, where p is a prime and A is free.
(3) G ∼= Z[1/p1]⊕ Z[1/p2]⊕ · · · ⊕ Z[1/pk ]⊕ A, where the ps

are distinct primes and A is free.
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Thank you for your attention!
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