Isonoetherian modules

Jan Žemlička

July 15, Graz 2025

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Basic properties

Isonoetherian modules over particular rings

Isonetherian abelian groups

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

In the sequel

- R denotes an associative ring with unit,
- *M* a right *R*-module,
- \bullet a group means an abelain group (i.e. $\mathbb Z\text{-module})$

A right module *M* over *R* is called *isonoetherian* if for every increasing chain $M_0 \le M_1 \le ...$ of submodules there exists *n* such that $M_m \cong M_{m+1}$ for each $m \ge n$. A ring *R* is *right isonoetherian* if R_R is isonoetherian.

Example

- (1) Every noetherian module is isonoetherian
- (2) If D is a DVR with the fraction field Q then

isonoetherian ring which is not right noetharian.

In the sequel

- R denotes an associative ring with unit,
- *M* a right *R*-module,
- a group means an abelain group (i.e. \mathbb{Z} -module)

A right module *M* over *R* is called *isonoetherian* if for every increasing chain $M_0 \le M_1 \le ...$ of submodules there exists *n* such that $M_m \cong M_{m+1}$ for each $m \ge n$. A ring *R* is *right isonoetherian* if R_R is isonoetherian.

Example

(1) Every noetherian module is isonoetherian

(2) If D is a DVR with the fraction field Q then

isonoetherian ring which is not right noetharian.

In the sequel

- R denotes an associative ring with unit,
- *M* a right *R*-module,
- a group means an abelain group (i.e. \mathbb{Z} -module)

A right module *M* over *R* is called *isonoetherian* if for every increasing chain $M_0 \le M_1 \le ...$ of submodules there exists *n* such that $M_m \cong M_{m+1}$ for each $m \ge n$. A ring *R* is *right isonoetherian* if R_R is isonoetherian.

Example

(1) Every noetherian module is isonoetherian

(2) If D is a DVR with the fraction field Q then

isonoetherian ring which is not right noetharian.

In the sequel

- R denotes an associative ring with unit,
- M a right R-module,
- a group means an abelain group (i.e. \mathbb{Z} -module)

A right module *M* over *R* is called *isonoetherian* if for every increasing chain $M_0 \le M_1 \le ...$ of submodules there exists *n* such that $M_m \cong M_{m+1}$ for each $m \ge n$. A ring *R* is *right isonoetherian* if R_R is isonoetherian.

Example

- (1) Every noetherian module is isonoetherian
- (2) If D is a DVR with the fraction field Q then $\begin{pmatrix} L \\ C \end{pmatrix}$

isonoetherian ring which is not right noetharian.

$$\begin{pmatrix} D & Q \\ D & D \end{pmatrix}$$
 is a right

Lemma (Facchini, Nazemian)

A module M is isonoetherian if and only if, for every non-empty set \mathcal{F} of submodules of M, there exists $N \in \mathcal{F}$ such that $L \cong N$, for every $L \ge N$.

Lemma

Let M be an isonoetherian module. Then there exist a finitely generated submodule F and a chain of submodules $(M_i \mid i < \omega)$ such that each finitely generated submodule containing F is isomorphic to F and

(1) each finitely generated submodule of M/F is noetherian,

(2) $M_0 = F$, $M_i \subseteq M_{i+1}$ for each *i* and $M = \bigcup_i M_i$,

(3) *M_{i+1}/M_i* is essential in *M/M_i* and it is a direct sum of noetherian cyclic submodules.

Lemma (Facchini, Nazemian)

A module M is isonoetherian if and only if, for every non-empty set \mathcal{F} of submodules of M, there exists $N \in \mathcal{F}$ such that $L \cong N$, for every $L \ge N$.

Lemma

Let *M* be an isonoetherian module. Then there exist a finitely generated submodule *F* and a chain of submodules $(M_i \mid i < \omega)$ such that each finitely generated submodule containing *F* is isomorphic to *F* and

(1) each finitely generated submodule of M/F is noetherian,

- (2) $M_0 = F$, $M_i \subseteq M_{i+1}$ for each *i* and $M = \bigcup_i M_i$,
- (3) M_{i+1}/M_i is essential in M/M_i and it is a direct sum of noetherian cyclic submodules.

Lemma (Facchini, Nazemian)

A module M is isonoetherian if and only if, for every non-empty set \mathcal{F} of submodules of M, there exists $N \in \mathcal{F}$ such that $L \cong N$, for every $L \ge N$.

Lemma

Let *M* be an isonoetherian module. Then there exist a finitely generated submodule *F* and a chain of submodules $(M_i \mid i < \omega)$ such that each finitely generated submodule containing *F* is isomorphic to *F* and

(1) each finitely generated submodule of M/F is noetherian,

(2)
$$M_0 = F$$
, $M_i \subseteq M_{i+1}$ for each *i* and $M = \bigcup_i M_i$,

(3) M_{i+1}/M_i is essential in M/M_i and it is a direct sum of noetherian cyclic submodules.

Lemma (Facchini, Nazemian)

A module M is isonoetherian if and only if, for every non-empty set \mathcal{F} of submodules of M, there exists $N \in \mathcal{F}$ such that $L \cong N$, for every $L \ge N$.

Lemma

Let *M* be an isonoetherian module. Then there exist a finitely generated submodule *F* and a chain of submodules $(M_i \mid i < \omega)$ such that each finitely generated submodule containing *F* is isomorphic to *F* and

(1) each finitely generated submodule of M/F is noetherian,

(2)
$$M_0 = F$$
, $M_i \subseteq M_{i+1}$ for each *i* and $M = \bigcup_i M_i$,

(3) *M*_{*i*+1}/*M*_{*i*} is essential in *M*/*M*_{*i*} and it is a direct sum of noetherian cyclic submodules.

Proposition

Let M be an isonoetherian module over a ring R.

(1) (Facchini, Nazemian) *M* has finite Goldie dimension,

- (2) if *R* semilocal, then $gen(M) \leq \omega$,
- (3) if R is commutative and κ is an infinite cardinal grater then the cardinality of the set of all maximal ideals, then gen(M) ≤ κ.

- (1) Being isonoetherian is a Morita invariant property of modules,
- (2) the product $\prod_{i \in I} R_i$ of rings is right isonoetherian if and only if I is finite and every R_i is right isonoetherian.

Proposition

Let M be an isonoetherian module over a ring R.

- (1) (Facchini, Nazemian) *M* has finite Goldie dimension,
- (2) if R semilocal, then $gen(M) \leq \omega$,
- (3) if R is commutative and κ is an infinite cardinal grater then the cardinality of the set of all maximal ideals, then gen(M) ≤ κ.

- (1) Being isonoetherian is a Morita invariant property of modules,
- (2) the product $\prod_{i \in I} R_i$ of rings is right isonoetherian if and only if I is finite and every R_i is right isonoetherian.

Proposition

Let M be an isonoetherian module over a ring R.

- (1) (Facchini, Nazemian) *M* has finite Goldie dimension,
- (2) if R semilocal, then $gen(M) \leq \omega$,
- (3) if R is commutative and κ is an infinite cardinal grater then the cardinality of the set of all maximal ideals, then gen(M) ≤ κ.

- (1) Being isonoetherian is a Morita invariant property of modules,
- (2) the product $\prod_{i \in I} R_i$ of rings is right isonoetherian if and only if I is finite and every R_i is right isonoetherian.

Proposition

Let M be an isonoetherian module over a ring R.

- (1) (Facchini, Nazemian) *M* has finite Goldie dimension,
- (2) if R semilocal, then $gen(M) \leq \omega$,
- (3) if R is commutative and κ is an infinite cardinal grater then the cardinality of the set of all maximal ideals, then gen(M) ≤ κ.

- (1) Being isonoetherian is a Morita invariant property of modules,
- (2) the product $\prod_{i \in I} R_i$ of rings is right isonoetherian if and only if I is finite and every R_i is right isonoetherian.

Proposition

Let M be an isonoetherian module over a ring R.

- (1) (Facchini, Nazemian) *M* has finite Goldie dimension,
- (2) if R semilocal, then $gen(M) \leq \omega$,
- (3) if R is commutative and κ is an infinite cardinal grater then the cardinality of the set of all maximal ideals, then gen(M) ≤ κ.

- (1) Being isonoetherian is a Morita invariant property of modules,
- (2) the product $\prod_{i \in I} R_i$ of rings is right isonoetherian if and only if I is finite and every R_i is right isonoetherian.

Chain rings

Lemma (Facchini, Nazemian)

A right chain domain is right isonoetherian if and only if it satisfies the ACC on infinitely generated right ideals.

Theorem (Facchini, Nazemian)

If a commutative valuation domain R is isonoetherian, then R has at most three prime ideals and P_P is a principal ideal of the localization R_P for every prime ideal P.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Facchini, Nazemian)

Every discrete valuation domain of Krull dimension 2 i is is isonoetherian.

Chain rings

Lemma (Facchini, Nazemian)

A right chain domain is right isonoetherian if and only if it satisfies the ACC on infinitely generated right ideals.

Theorem (Facchini, Nazemian)

If a commutative valuation domain R is isonoetherian, then R has at most three prime ideals and P_P is a principal ideal of the localization R_P for every prime ideal P.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Theorem (Facchini, Nazemian)

Every discrete valuation domain of Krull dimension 2 i is is is

Chain rings

Lemma (Facchini, Nazemian)

A right chain domain is right isonoetherian if and only if it satisfies the ACC on infinitely generated right ideals.

Theorem (Facchini, Nazemian)

If a commutative valuation domain R is isonoetherian, then R has at most three prime ideals and P_P is a principal ideal of the localization R_P for every prime ideal P.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Theorem (Facchini, Nazemian)

Every discrete valuation domain of Krull dimension 2 i is isonoetherian.

Perfect rings

Lemma

If M is an isonoetherian module over a semilocal ring, then for every submodule N there exist a finitely generated submodule $F \subseteq N$ such that N is countably generated and N/F = (N/F)J.

Theorem Let M be a module over a right perfect ring R. Then M is isonoetherian iff it is noetherian.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Perfect rings

Lemma

If M is an isonoetherian module over a semilocal ring, then for every submodule N there exist a finitely generated submodule $F \subseteq N$ such that N is countably generated and N/F = (N/F)J.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem Let M be a module over a right perfect ring R. Then M is isonoetherian iff it is noetherian.

Abelian groups

Lemma

Let M be an isonoetherian group with the torsion part T. Then

- (1) *T* is finite and there exist a torsion-free submodule *N* of a finite rank such that $M = F \oplus T$,
- (2) if F is a free subgroup of M such that rank(F) = rank(M), then M/F contains unbounded p-subgroups for only finitely many prime numbers p.

Proposition

Let F be a free group of finite rank, and M be any group. Then M is isonoetherian if and only if $M \oplus F$ is isonoetherian.

Abelian groups

Lemma

Let M be an isonoetherian group with the torsion part T. Then

- (1) *T* is finite and there exist a torsion-free submodule *N* of a finite rank such that $M = F \oplus T$,
- (2) if F is a free subgroup of M such that rank(F) = rank(M), then M/F contains unbounded p-subgroups for only finitely many prime numbers p.

Proposition

Let F be a free group of finite rank, and M be any group. Then M is isonoetherian if and only if $M \oplus F$ is isonoetherian.

Abelian groups

Lemma

Let M be an isonoetherian group with the torsion part T. Then

- (1) *T* is finite and there exist a torsion-free submodule *N* of a finite rank such that $M = F \oplus T$,
- (2) if F is a free subgroup of M such that rank(F) = rank(M), then M/F contains unbounded p-subgroups for only finitely many prime numbers p.

Proposition

Let F be a free group of finite rank, and M be any group. Then M is isonoetherian if and only if $M \oplus F$ is isonoetherian.

Let *M* be a torsion-free group of a finite rank and $F \le M$ a subgroup of the same rank. Denote by $d_p(M)$ the rank of *p*-component of the divisible part of M/F.

Proposition

- (1) $\tilde{\alpha} = p \cdot \mu$ for algebraic $\mu \in \hat{\mathbf{Z}}_{p}^{*}$ where the endomorphisms $\tilde{\alpha} \in \operatorname{End}(A/F_{0})$ is induced by α ,
- (2) $\alpha(C) = C$ for each $C \le A$ which is indecomposable and pure and $d_p(C) = 1$,
- (3) $A_1 \cap A_2 \leq F_0$, $\alpha(F_i) = F_{i-1}$ for all i > 0, and $\alpha(A_1) = A_1$, $\alpha(A_2) = A_2$, $\alpha(A_1 \cap A_2) = A_1 \cap A_2$.

Let *M* be a torsion-free group of a finite rank and $F \le M$ a subgroup of the same rank. Denote by $d_p(M)$ the rank of *p*-component of the divisible part of M/F.

Proposition

- (1) $\tilde{\alpha} = p \cdot \mu$ for algebraic $\mu \in \hat{\mathbf{Z}}_{p}^{*}$ where the endomorphisms $\tilde{\alpha} \in \operatorname{End}(A/F_{0})$ is induced by α ,
- (2) $\alpha(C) = C$ for each $C \le A$ which is indecomposable and pure and $d_p(C) = 1$,
- (3) $A_1 \cap A_2 \leq F_0$, $\alpha(F_i) = F_{i-1}$ for all i > 0, and $\alpha(A_1) = A_1$, $\alpha(A_2) = A_2$, $\alpha(A_1 \cap A_2) = A_1 \cap A_2$.

Let *M* be a torsion-free group of a finite rank and $F \le M$ a subgroup of the same rank. Denote by $d_p(M)$ the rank of *p*-component of the divisible part of M/F.

Proposition

- (1) $\tilde{\alpha} = \boldsymbol{p} \cdot \boldsymbol{\mu}$ for algebraic $\boldsymbol{\mu} \in \hat{\mathbf{Z}}_{\boldsymbol{p}}^*$ where the endomorphisms $\tilde{\alpha} \in \operatorname{End}(A/F_0)$ is induced by α ,
- (2) $\alpha(C) = C$ for each $C \leq A$ which is indecomposable and pure and $d_p(C) = 1$,
- (3) $A_1 \cap A_2 \leq F_0$, $\alpha(F_i) = F_{i-1}$ for all i > 0, and $\alpha(A_1) = A_1$, $\alpha(A_2) = A_2$, $\alpha(A_1 \cap A_2) = A_1 \cap A_2$.

Let *M* be a torsion-free group of a finite rank and $F \le M$ a subgroup of the same rank. Denote by $d_p(M)$ the rank of *p*-component of the divisible part of M/F.

Proposition

- (1) $\tilde{\alpha} = p \cdot \mu$ for algebraic $\mu \in \hat{\mathbf{Z}}_{p}^{*}$ where the endomorphisms $\tilde{\alpha} \in \operatorname{End}(A/F_{0})$ is induced by α ,
- (2) $\alpha(C) = C$ for each $C \leq A$ which is indecomposable and pure and $d_p(C) = 1$,
- (3) $A_1 \cap A_2 \leq F_0$, $\alpha(F_i) = F_{i-1}$ for all i > 0, and $\alpha(A_1) = A_1$, $\alpha(A_2) = A_2$, $\alpha(A_1 \cap A_2) = A_1 \cap A_2$.

Proposition

Let p be prime and A an indecomposable torsion-free group such that $\operatorname{rank}(A) > 1$ and $A/G \cong \mathbb{Z}_{p^{\infty}}$ for a finitely generated subgroup G. Then $A \oplus \mathbb{Z}[\frac{1}{p}]$ is not isonoetherian.

Theorem (Keef)

- (1) $G \cong \mathbb{Z}[1/(p_1 \cdots p_k)] \oplus A$, where the ps are distinct primes and A is free.
- (2) $G \cong \mathbb{Z}[1/p]^2 \oplus A$, where p is a prime and A is free.
- (3) $G \cong \mathbb{Z}[1/p_1] \oplus \mathbb{Z}[1/p_2] \oplus \cdots \oplus \mathbb{Z}[1/p_k] \oplus A$, where the ps are distinct primes and A is free.

Proposition

Let p be prime and A an indecomposable torsion-free group such that $\operatorname{rank}(A) > 1$ and $A/G \cong \mathbb{Z}_{p^{\infty}}$ for a finitely generated subgroup G. Then $A \oplus \mathbb{Z}[\frac{1}{p}]$ is not isonoetherian.

Theorem (Keef)

- (1) $G \cong \mathbb{Z}[1/(p_1 \cdots p_k)] \oplus A$, where the ps are distinct primes and A is free.
- (2) $G \cong \mathbb{Z}[1/p]^2 \oplus A$, where p is a prime and A is free.
- (3) $G \cong \mathbb{Z}[1/p_1] \oplus \mathbb{Z}[1/p_2] \oplus \cdots \oplus \mathbb{Z}[1/p_k] \oplus A$, where the ps are distinct primes and A is free.

Proposition

Let p be prime and A an indecomposable torsion-free group such that $\operatorname{rank}(A) > 1$ and $A/G \cong \mathbb{Z}_{p^{\infty}}$ for a finitely generated subgroup G. Then $A \oplus \mathbb{Z}[\frac{1}{p}]$ is not isonoetherian.

Theorem (Keef)

- (1) $G \cong \mathbb{Z}[1/(p_1 \cdots p_k)] \oplus A$, where the ps are distinct primes and A is free.
- (2) $G \cong \mathbb{Z}[1/p]^2 \oplus A$, where p is a prime and A is free.
- (3) $G \cong \mathbb{Z}[1/p_1] \oplus \mathbb{Z}[1/p_2] \oplus \cdots \oplus \mathbb{Z}[1/p_k] \oplus A$, where the ps are distinct primes and A is free.

Proposition

Let p be prime and A an indecomposable torsion-free group such that $\operatorname{rank}(A) > 1$ and $A/G \cong \mathbb{Z}_{p^{\infty}}$ for a finitely generated subgroup G. Then $A \oplus \mathbb{Z}[\frac{1}{p}]$ is not isonoetherian.

Theorem (Keef)

- (1) $G \cong \mathbb{Z}[1/(p_1 \cdots p_k)] \oplus A$, where the ps are distinct primes and A is free.
- (2) $G \cong \mathbb{Z}[1/p]^2 \oplus A$, where p is a prime and A is free.
- (3) $G \cong \mathbb{Z}[1/p_1] \oplus \mathbb{Z}[1/p_2] \oplus \cdots \oplus \mathbb{Z}[1/p_k] \oplus A$, where the ps are distinct primes and A is free.

Thank you for your attention!